Optoelectronics Reports

Publication Frequency: The publication frequency of Optoelectronics Reports (OER) is quarterly.

Article Processing Charges (APC):Click here for more details

Publishing Model: Open Access

Submission to final decision: days

Acceptance to publication: days

   About the Journal


Announcements

 
No announcements have been published.
 
More Announcements...
Optoelectronics Reports (OER) is a strictly peer-reviewed open-access journal. It accept original academic submissions with unique innovation and novel research ideas in the field of Optoelectronics. Optoelectronics Reports (OER) is committed to providing a forum for the global researchers to promote the development of Optoelectronics technology. Original research articles, reviews, case reports are very welcomed.


  Vol 1, No 1 (2024)

Table of Contents

Original Research Articles

by Abdul Haseeb Hassan Khan, Hameed Ullah, Liping Li, Abdul Basit, Khadija Boughanbour, Sumayya Khan, Aimal Daud Khan
152 Views, 82 PDF Downloads

In the quest for sustainable energy solutions, we undertook a rigorous examination of both toxic and non-toxic perovskite solar cells (PSCs), assessing their potential across different absorber thicknesses and their viability within Building-Integrated Photovoltaics (BIPV). Our MAPbI3-based solar cell, utilizing TiO2 and Cu2O as electron and hole transport layers, respectively, exhibited an efficiency of 20.65% with a 400 nm opaque absorber. Interestingly, when this thickness was reduced to 200 nm, endowing the PSC with semitransparent properties, certain performance metrics altered, revealing insights crucial for BIPV integration. Further experiments with the toxic FAPbI3 absorber resulted in an efficiency of 23.37% for its 400 nm opaque variant. However, the semitransparent 200 nm layer presented distinct characteristics, emphasizing the complex interplay between thickness, transparency, and efficiency. Our exploration did not stop at toxic materials; we delved into non-toxic alternatives, MAGeI3 and RbGeI3. These variants produced efficiencies of 14.59% and 20.40% for their 400 nm configurations. Yet again, their 200 nm semitransparent counterparts showcased performance nuances. Synthesizing our findings, it becomes evident that semitransparent PSCs hold significant promise for BIPV applications, but achieving an optimal blend of efficiency, transparency, and architectural appeal demands further focused research.

PDF

Original Research Articles

by Kunio Shimada
67 Views, 35 PDF Downloads

It is expected that the physical paradigm of solar cells will be possible to fabricate optical biosensors that mimic the human eye, including flexibility and stretchability. The purpose of this article is to demonstrate the morphological fabrication of an optical biosensor made of rubber by utilizing the physical paradigm of solar cells involving electric and chemical processes. However, a critical problem of current solar cells is their use of pieces of solid transparent conductive glass as electrodes, as especially shown in organic thin-film type solar cells involving dye-synthesized and perovskite-type solar cells. Therefore, we must solve this problem in order to be able to develop flexible and stretchable solar cells for optical biosensors. The key point of the solution is to avoid using rigid conductive glass and to coat a flexible and stretchable material such as rubber with TiO2. In the present study, we proposed a novel fabrication technique for a flexible and stretchable rubber coated with TiO2 by electrolytic polymerization utilizing our developed magnetic responsive intelligent fluid, hybrid fluid (HF), in order to produce the optical biosensor. The photovoltaic results experimentally demonstrated the photovoltage response to illumination with around 3–60 mV enhancement. In addition, we elucidated the photovoltaic mechanism by using electrochemical measurement involving the cyclic voltammetry (CV) profile and electrochemical impedance spectroscopy (EIS), introducing the equivalent electric circuit's intrinsic structure. The results demonstrated that the rubber type behaves dominantly in the area outside the electrical double layer (EDL) under illumination, and then the response time of photovoltage to illumination is slow with non-linear CV profiles. On the other hand, the optical biosensor type behaves dominantly in the EDL under illumination, and then the response time is fast with linear CV profiles, which denotes that the optical biosensor type is optimal for photodiodes. Furthermore, these results can demonstrate the chemical-photovoltaic reaction of the HF rubber involving TiO2. The investigation might present the viability of the fabrication of ophthalmological systems that mimic the human eye.

PDF