Exploring the efficiency and transparency in toxic and non-toxic perovskite solar cells by using SCAPS-1D
Abstract
In the quest for sustainable energy solutions, we undertook a rigorous examination of both toxic and non-toxic perovskite solar cells (PSCs), assessing their potential across different absorber thicknesses and their viability within Building-Integrated Photovoltaics (BIPV). Our MAPbI3-based solar cell, utilizing TiO2 and Cu2O as electron and hole transport layers, respectively, exhibited an efficiency of 20.65% with a 400 nm opaque absorber. Interestingly, when this thickness was reduced to 200 nm, endowing the PSC with semitransparent properties, certain performance metrics altered, revealing insights crucial for BIPV integration. Further experiments with the toxic FAPbI3 absorber resulted in an efficiency of 23.37% for its 400 nm opaque variant. However, the semitransparent 200 nm layer presented distinct characteristics, emphasizing the complex interplay between thickness, transparency, and efficiency. Our exploration did not stop at toxic materials; we delved into non-toxic alternatives, MAGeI3 and RbGeI3. These variants produced efficiencies of 14.59% and 20.40% for their 400 nm configurations. Yet again, their 200 nm semitransparent counterparts showcased performance nuances. Synthesizing our findings, it becomes evident that semitransparent PSCs hold significant promise for BIPV applications, but achieving an optimal blend of efficiency, transparency, and architectural appeal demands further focused research.
Keywords
Full Text:
PDFReferences
1. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 2009, 131(17): 6050–6051. doi: 10.1021/ja809598r
2. Park NG. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. The Journal of Physical Chemistry Letters. 2013, 4(15): 2423–2429. doi: 10.1021/jz400892a
3. Snaith HJ. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. The Journal of Physical Chemistry Letters. 2013, 4(21): 3623–3630. doi: 10.1021/jz4020162
4. Sun S, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science. 2014, 7(1): 399–407. doi: 10.1039/c3ee43161d
5. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013, 342(6156): 341–344. doi: 10.1126/science.1243982
6. Khan AHH, Basit S, Hameedullah. Improving the efficiency of lead-free non-toxic rubidium germanium iodide perovskite solar cell using a molybdenum disulfide interface layer: A SCAPS 1D simulation study. International Research Journal of Modernization in Engineering Technology and Science. 2023; 5(10): 1801–1804. doi: 10.56726/IRJMETS45496
7. Barrows AT, Pearson AJ, Kwak CK, et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science. 2014, 7(9): 2944–2950. doi: 10.1039/c4ee01546k
8. Vak D, Hwang K, Faulks A, et al. 3D printer based slot‐die coater as a lab‐to‐fab translation tool for solution‐processed solar cells. Advanced Energy Materials. 2014, 5(4). doi: 10.1002/aenm.201401539
9. Kim JH, Williams ST, Cho N, et al. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade‐coating. Advanced Energy Materials. 2014, 5(4). doi: 10.1002/aenm.201401229
10. NREL. Best research-cell efficiency chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 22 December 2023).
11. Li C, Lu X, Ding W, et al. Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B Structural Science. 2008, 64(6): 702–707. doi: 10.1107/s0108768108032734
12. Eperon GE, Stranks SD, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science. 2014, 7(3): 982. doi: 10.1039/c3ee43822h
13. Ono LK, Juarez-Perez EJ, Qi Y. Progress on perovskite materials and solar cells with mixed cations and halide anions. ACS Applied Materials & Interfaces. 2017, 9(36): 30197–30246. doi: 10.1021/acsami.7b06001
14. Saliba M, Matsui T, Seo JY, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science. 2016, 9(6): 1989–1997. doi: 10.1039/c5ee03874j
15. Pellet N, Gao P, Gregori G, et al. Mixed‐organic‐cation perovskite photovoltaics for enhanced solar‐light harvesting. Angewandte Chemie International Edition. 2014, 53(12): 3151–3157. doi: 10.1002/anie.201309361
16. Park NG. Perovskite solar cells: An emerging photovoltaic technology. Materials Today. 2015, 18(2): 65–72. doi: 10.1016/j.mattod.2014.07.007
17. De Wolf S, Holovsky J, Moon SJ, et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. The Journal of Physical Chemistry Letters. 2014, 5(6): 1035–1039. doi: 10.1021/jz500279b
18. Chang YH, Park CH, Matsuishi K. First-principles study of the structural and the electronic properties of the lead-Halide-based inorganic-organic perovskites (CH~ 3NH~ 3) PbX~ 3 and CsPbX~ 3 (X= Cl, Br, I). Journal-Korean Physical Society. 2004; 44: 889–893.
19. Kulkarni SA, Baikie T, Boix PP, et al. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A. 2014, 2(24): 9221–9225. doi: 10.1039/c4ta00435c
20. Ding G, Zheng Y, Xiao X, et al. Sustainable development of perovskite solar cells: Keeping a balance between toxicity and efficiency. Journal of Materials Chemistry A. 2022, 10(15): 8159–8171. doi: 10.1039/d2ta00248e
21. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013, 501(7467): 395–398. doi: 10.1038/nature12509
22. Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013, 499(7458): 316–319. doi: 10.1038/nature12340
23. Chen C, Kang H, Hsiao S, et al. Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials. 2014, 26(38): 6647–6652. doi: 10.1002/adma.201402461
24. Schneider A, Alon S, Etgar L. Evolution of photovoltaic performance in fully printable mesoscopic carbon‐based perovskite solar cells. Energy Technology. 2019, 7(7). doi: 10.1002/ente.201900481
25. U.S. Energy Information Administration. Residential energy consumption survey (RECS). Available online: https://www.eia.gov/consumption/residential/ (accessed on 22 December 2023).
26. Zhang W, Anaya M, Lozano G, et al. Highly efficient perovskite solar cells with tunable structural color. Nano Letters. 2015, 15(3): 1698–1702. doi: 10.1021/nl504349z
27. Xue Q, Xia R, Brabec CJ, et al. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy & Environmental Science. 2018, 11(7): 1688–1709. doi: 10.1039/c8ee00154e
28. Jeon NJ, Na H, Jung EH, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy. 2018, 3(8): 682–689. doi: 10.1038/s41560-018-0200-6
29. Shen H, Duong T, Peng J, et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy & Environmental Science. 2018, 11(2): 394–406. doi: 10.1039/c7ee02627g
30. Service RF. Perovskite solar cells gear up to go commercial. Science. 2016, 354(6317): 1214–1215. doi: 10.1126/science.354.6317.1214
31. Della Gaspera E, Peng Y, Hou Q, et al. Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy. 2015, 13: 249–257. doi: 10.1016/j.nanoen.2015.02.028
32. Imran H, Durrani I, Kamran M, et al. High-performance bifacial perovskite/silicon double-tandem solar cell. IEEE Journal of Photovoltaics. 2018, 8(5): 1222–1229. doi: 10.1109/jphotov.2018.2846519
33. Ball JM, Stranks SD, Hörantner MT, et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy & Environmental Science. 2015, 8(2): 602–609. doi: 10.1039/c4ee03224a
34. Lie S, Bruno A, Wong LH, et al. Semitransparent perovskite solar cells with > 13% efficiency and 27% transperancy using plasmonic Au nanorods. ACS Applied Materials & Interfaces. 2022, 14(9): 11339–11349. doi: 10.1021/acsami.1c22748
35. Burgelman M, Nollet P, Degrave S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films. 2000, 361–362: 527–532. doi: 10.1016/s0040-6090(99)00825-1
36. Raoui Y, Ez-Zahraouy H, Tahiri N, et al. Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Solar Energy. 2019, 193: 948–955. doi: 10.1016/j.solener.2019.10.009
37. Karthick S, Velumani S, Bouclé J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy. 2020, 205: 349–357. doi: 10.1016/j.solener.2020.05.041
38. Tariq Jan S, Noman M. Influence of layer thickness, defect density, doping concentration, interface defects, work function, working temperature and reflecting coating on lead-free perovskite solar cell. Solar Energy. 2022, 237: 29–43. doi: 10.1016/j.solener.2022.03.069
39. Pindolia G, Shinde SM, Jha PK. Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy. 2022, 236: 802–821. doi: 10.1016/j.solener.2022.03.053
40. Tara A, Bharti V, Sharma S, et al. Device simulation of FASnI3 based perovskite solar cell with Zn(O0.3, S0.7) as electron transport layer using SCAPS-1D. Optical Materials. 2021, 119: 111362. doi: 10.1016/j.optmat.2021.111362
41. Son DY, Im JH, Kim HS, et al. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. The Journal of Physical Chemistry C. 2014, 118(30): 16567–16573. doi: 10.1021/jp412407j
42. Barbé J, Tietze ML, Neophytou M, et al. Amorphous Tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. ACS Applied Materials & Interfaces. 2017, 9(13): 11828–11836. doi: 10.1021/acsami.6b13675
43. Kim H, Lim KG, Lee TW. Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers. Energy & Environmental Science. 2016, 9(1): 12–30. doi: 10.1039/c5ee02194d
(152 Abstract Views, 82 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Abdul Haseeb Hassan Khan, Hameed Ullah, Liping Li, Abdul Basit, Khadija Boughanbour, Sumayya Khan, Aimal Daud Khan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.