Open Journal Systems

Biofabricated MoO3 nanoparticles for biomedical applications: Antibacterial efficacy, hemocompatibility, and wound healing properties

Anisha Salim, Subramaniam Sadhasivam

Abstract

This study presents a simple, eco-friendly, and cost-effective method for synthesizing molybdenum trioxide nanoparticles (MoO3 NPs) using the medicinal plant Hemigraphis alternata. The physicochemical characterization confirmed the formation of orthorhombic MoO3 NPs. The green synthesized NPs exhibited remarkable antioxidant and antimicrobial properties against multi drug-resistant bacteria (S. aureus and P. aeruginosa) and fungi (A. niger and C. albicans) in a concentration-dependent manner. Hemocompatibility assessments on human erythrocytes suggested their potential application in wound healing. Cytotoxicity evaluations on mouse fibroblast cell lines demonstrated no harmful effects. Furthermore, in vitro scratch assays revealed over 90% wound healing activity without cytotoxicity. The findings indicate that these green synthesized MoO3 NPs hold promise for incorporation into wound dressings, offering a safe and effective solution for infectious wound healing. This study represents a novel effort to update practitioners on the latest developments in the widespread use of green synthesized NPs in medicine.


Keywords

green synthesis; MoO3 NPs; hemocompatability; cytotoxicity; antimicrobial; wound healing activity

Full Text:

PDF

References

1. Ahn EY, Jin H, Park Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering: C 2019; 101: 204–216. doi: 10.1016/j.msec.2019.03.095

2. Ahmed HE, Iqbal Y, Aziz MH, et al. Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: Evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules 2021; 26(15): 4659. doi: 10.3390/molecules26154659

3. Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research 2019; 23(1): 20. doi: 10.1186/s40824-019-0166-x

4. Selvi RT, Prasanna APS, Niranjan R, et al. Metal oxide curcumin incorporated polymer patches for wound healing. Applied Surface Science 2018; 449: 603–609. doi: 10.1016/j.apsusc.2018.01.143

5. Séby F. Chapter eleven—Metal and metal oxide nanoparticles in cosmetics and skin care products. Comprehensive Analytical Chemistry 2021; 93: 381–427. doi: 10.1016/bs.coac.2021.02.009

6. Soltys L, Olkhovyy O, Tatarchuk T, Naushad M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry 2021; 7(11): 145. doi: 10.3390/magnetochemistry7110145

7. Jeevanandam J, Kiew SF, Boakye-Ansah S, et al. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 2022; 14(7): 2534–2571. doi: 10.1039/d1nr08144f

8. Ishak NAIM, Kamarudin SK, Timmiati SN. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Materials Research Express 2019; 6(11): 112004. doi: 10.1088/2053-1591/ab4458

9. Mobaraki F, Momeni M, Yazdi MET, et al. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochemistry 2021; 111: 167–177. doi: 10.1016/j.procbio.2021.09.010

10. Namvar F, Rahman H, Mohamad R, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. International Journal of Nanomedicine 2014; 9(1): 2479. doi: 10.2147/IJN.S59661

11. Vinodhini S, Vithiya BSM, Prasad TAA. Green synthesis of palladium nanoparticles using aqueous plant extracts and its biomedical applications. Journal of King Saud University-Science 2022; 34(4): 102017. doi: 10.1016/j.jksus.2022.102017

12. Marimuthu M, Kumar BP, Salomi LM, et al. Methylene blue-fortified molybdenum trioxide nanoparticles: Harnessing radical scavenging property. ACS Applied Materials & Interfaces 2018; 10(50): 43429–43438. doi: 10.1021/acsami.8b15841

13. Yoshida M, Hattori H, Ôta S, et al. Molybdenum balance in healthy young Japanese women. Journal of Trace Elements in Medicine and Biology 2006; 20(4): 245–252. doi: 10.1016/j.jtemb.2006.07.004

14. Indrakumar J, Korrapati PS. Steering efficacy of nano molybdenum towards cancer: Mechanism of action. Biological Trace Element Research 2020; 194: 121–134. doi: 10.1007/s12011-019-01742-2

15. Indrakumar J, Balan P, Murali P, et al. Applications of molybdenum oxide nanoparticles impregnated collagen scaffolds in wound therapeutics. Journal of Trace Elements in Medicine and Biology 2022; 72: 126983. doi: 10.1016/j.jtemb.2022.126983

16. Lopes E, Piçarra S, Almeida PL, et al. Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens. Journal of Medical Microbiology 2018; 67(8): 1042–1046. doi: 10.1099/jmm.0.000789

17. Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 2005; 19(7): 975–983. doi: 10.1016/j.tiv.2005.06.034

18. Fazio E, Speciale A, Spadaro S, et al. Evaluation of biological response induced by molybdenum oxide nanocolloids on in vitro cultured NIH/3T3 fibroblast cells by micro-Raman spectroscopy. Colloids and Surfaces B: Biointerfaces 2018; 170: 233–241. doi: 10.1016/j.colsurfb.2018.06.028

19. Sasidharan S, Pottail L. Anti-bacterial and skin-cancer activity of AuNP, rGO and AuNP-rGO composite using Hemigraphis alternata (Burm.F.) T. Anderson. Biocatalysis and Agricultural Biotechnology 2020; 25: 101596. doi: 10.1016/j.bcab.2020.101596

20. Koshy J, Sangeetha D. Hemigraphis alternata leaf extract incorporated agar/pectin-based bio-engineered wound dressing materials for effective skin cancer wound care therapy. Polymers 2022; 15(1): 115. doi: 10.3390/polym15010115

21. Sreekumar D, Bhasker S, Devi PR, Mohankumar C. Wound healing potency of Hemigraphis alternata (Burm.f) T. Anderson leaf extract (HALE) with molecular evidence. Indian Journal of Experimental Biology 2021; 58: 236–245.

22. Zumsteg IS, Weckerle CS. Bakera, a herbal steam bath for postnatal care in Minahasa (Indonesia): Documentation of the plants used and assessment of the method. Journal of Ethnopharmacology 2007; 111(3): 641–650. doi: 10.1016/j.jep.2007.01.016

23. Annapoorna M, Kumar PT, Lakshman LR, et al. Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold. Carbohydrate Polymers 2013; 92(2): 1561–1565. doi: 10.1016/j.carbpol.2012.10.041

24. Rahman SMM, Atikullah M, Islam MN, et al. Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice. Clinical Phytoscience 2019; 5: 16. doi: 10.1186/s40816-019-0110-6

25. Abazari M, Akbari T, Hasani M, et al. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydrate Polymers 2022; 294: 119808. doi: 10.1016/j.carbpol.2022.119808

26. Kanneganti A, Manasa C, Doddapaneni P. A sustainable approach towards synthesis of MoO3 nanoparticles using citrus limetta pith extract. International Journal of Engineering and Advanced Technology 2014; 3(5): 128–130.

27. Prasathkumar M, Anisha S, Dhrisya C, et al. Therapeutic and pharmacological efficacy of selective Indian medicinal plants—A review. Phytomedicine Plus 2021; 1(2): 100029. doi: 10.1016/j.phyplu.2021.100029

28. Rajkumar T, Sapi A, Das G, et al. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. Journal of Photochemistry and Photobiology B: Biology 2019; 193: 1–7. doi: 10.1016/j.jphotobiol.2019.01.008

29. Mogana R, Adhikari A, Tzar MN, et al. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Medicine and Therapies 2020; 20: 55. doi: 10.1186/s12906-020-2837-5

30. Gokulakrishnan R, Ravikumar S, Raj JA. In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens. Asian Pacific Journal of Tropical Disease 2012; 2(5): 411–413. doi: 10.1016/S2222-1808(12)60089-9

31. Devi HS, Boda MA, Shah MA, Shah MA. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing and Synthesis 2019; 8(1): 38–45. doi: 10.1515/gps-2017-0145

32. Zhao R, Lv M, Li Y, et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Applied Materials & Interfaces 2017; 9(18): 15328–15341. doi: 10.1021/acsami.7b03987

33. Li WR, Xie XB, Shi QS, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology 2010; 85: 1115–1122. doi: 10.1007/s00253-009-2159-5

34. Sulaiman CT, Gopalakrishnan VK. Radical scavenging and in-vitro hemolytic activity of aqueous extracts of selected acacia species. Journal of Applied Pharmaceutical Science 2013; 3(3): 109–111. doi: 10.7324/JAPS.2013.30321

35. Prasathkumar M, Raja K, Vasanth K, et al. Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of Senna auriculata (L.) Roxb. leaves. Arabian Journal of Chemistry 2021; 14(9): 103345. doi: 10.1016/j.arabjc.2021.103345

36. Prasathkumar M, Anisha S, Khusro A, et al. Anti-pathogenic, anti-diabetic, anti-inflammatory, antioxidant, and wound healing efficacy of Datura metel L. leaves. Arabian Journal of Chemistry 2022; 15(9): 104112. doi: 10.1016/j.arabjc.2022.104112

37. Hajiashrafi S, Motakef-Kazemi N. Green synthesis of zinc oxide nanoparticles using parsley extract. Nanomedicine Research Journal 2018; 3(1): 44–50. doi: 10.22034/nmrj.2018.01.007

38. Ganguly A, George R. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles. Bulletin of Materials Science 2007; 30(2): 183–185. doi: 10.1007/s12034-007-0033-6

39. Nunna GP, Siddarapu HK, Nimmagadda VV, et al. Biogenic synthesis of high-performance α-MoO3 nanoparticles from tryptophan derivatives for antimicrobial agents and electrode materials of supercapacitors. International Journal of Energy Research 2023; 2023: 6715319. doi: 10.1155/2023/6715319

40. Gowtham B, Ponnuswamy V, Pradeesh G, et al. MoO3 overview: Hexagonal plate-like MoO3 nanoparticles prepared by precipitation method. Journal of Materials Science: Materials in Electronics 2018; 29(8): 6835–6843. doi: 10.1007/s10854-018-8670-7

41. Myachina M, Gavrilova N, Nazarov V. Formation of molybdenum blue nanoparticles in the organic reducing area. Molecules 2021; 26(15): 4438. doi: 10.3390/molecules26154438

42. Mamatha KM, Murthy VS, Ravikumar CR, et al. Facile green synthesis of Molybdenum oxide nanoparticles using Centella Asiatica plant: Its photocatalytic and electrochemical lead sensor applications. Sensors International 2022; 3: 100153. doi: 10.1016/j.sintl.2021.100153

43. Prakash NG, Dhananjaya M, Lakshmi NA, Hussain OM. Green synthesis of molybdenum trioxide nanoparticles using Lepidagathiscristata leaf extract for supercapacitor applications. In: Proceedings of the International Meeting on Energy Storage Devices and Industry-Academia Conclave; 10–12 December 2018; Roorkee, India. p. 110.

44. Kothaplamoottil Sivan S, Padinjareveetil AKK, Padil VVT, et al. Greener assembling of MoO3 nanoparticles supported on gum arabic: Cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol. Clean Technologies and Environmental Policy 2019; 21(8): 1549–1561. doi: 10.1007/s10098-019-01726-9

45. Bhuiyan MSH, Miah MY, Paul SC, et al. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020; 6(8): e04603. doi: 10.1016/j.heliyon.2020.e04603

46. Sackey J, Nwanya AC, Bashir AKH, et al. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Materials Chemistry and Physics 2020; 244: 122714. doi: 10.1016/j.matchemphys.2020.122714

47. Martínez-Cabanas M, López-García M, Rodríguez-Barro P, et al. Antioxidant capacity assessment of plant extracts for green synthesis of nanoparticles. Nanomaterials 2021; 11(7): 1679. doi: 10.3390/nano11071679

48. Al-Radadi NS. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arabian Journal of Chemistry 2021; 14(2): 102956. doi: 10.1016/j.arabjc.2020.102956

49. Fakhri A, Nejad PA. Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. Journal of Photochemistry and Photobiology B: Biology 2016; 159: 211–217. doi: 10.1016/j.jphotobiol.2016.04.002

50. Arsène MMJ, Podoprigora IV, Davares AKL, et al. Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Veterinary World 2021; 14(5): 1330–1341. doi: 10.14202/vetworld.2021.1330-1341

51. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. New function of molybdenum trioxide nanoplates: Toxicity towards pathogenic bacteria through membrane stress. Colloids and Surfaces B: Biointerfaces 2013; 112: 521–524. doi: 10.1016/j.colsurfb.2013.08.026

52. Tétault N, Gbaguidi-Haore H, Bertrand X, et al. Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms. Antimicrobial Resistance and Infection Control 2012; 1: 35. doi: 10.1186/2047-2994-1-35

53. Krishnamoorthy K, Premanathan M, Veerapandian M, Kim SJ. Nanostructured molybdenum oxide-based antibacterial paint: Effective growth inhibition of various pathogenic bacteria. Nanotechnology 2014; 25(31): 315101. doi: 10.1088/0957-4484/25/31/315101

54. Chen J, Wu L, Lu M, et al. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology 2020; 11: 365. doi: 10.3389/fmicb.2020.00365

55. Kumari J, Mangala P. Fabrication and characterization of molybdenum trioxide nanoparticles and their anticancer, antibacterial and antifungal activities. Malaysian Journal of Chemistry 2022; 24(1): 36–53.

56. Vanathi P, Rajiv P, Sivaraj R. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bulletin of Materials Science 2016; 39(5): 1165–1170. doi: 10.1007/s12034-016-1276-x

57. Garibo D, Borbón-Nuñez HA, de León JND, et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports 2020; 10: 12805. doi: 10.1038/s41598-020-69606-7

58. Gudkov SV, Burmistrov DE, Serov DA, et al. A mini review of antibacterial properties of ZnO nanoparticles. Frontiers in Physics 2021; 9: 641481. doi: 10.3389/fphy.2021.641481

59. Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics 2017; 6(5): 853–879. doi: 10.1515/nanoph-2016-0189

60. da Silva BL, Caetano BL, Chiari-Andréo BG, et al. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces 2019; 177: 440–447. doi: 10.1016/j.colsurfb.2019.02.013

61. Qayyum S, Oves M, Khan AU. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PloS One 2017; 12(8): e0181363. doi: 10.1371/journal.pone.0181363

62. Gomaa EZ. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for gram-positive and gram-negative bacteria. The Journal of General and Applied Microbiology 2017; 63(1): 36–43. doi: 10.2323/jgam.2016.07.004

63. de la Harpe KM, Kondiah PPD, Choonara YE, et al. The hemocompatibility of nanoparticles: A review of cell-nanoparticle interactions and hemostasis. Cells 2019; 8(10): 1209. doi: 10.3390/cells8101209

64. Ashokraja C, Sakar M, Balakumar S. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles. Materials Research Express 2017; 4(10): 105406. doi: 10.1088/2053-1591/aa90f2

65. Selvakumar P, Sithara R, Viveka K, Sivashanmugam P. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. Journal of Photochemistry and Photobiology B: Biology 2018; 182: 52–61. doi: 10.1016/j.jphotobiol.2018.03.018

66. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Molecular Pharmaceutics 2008; 5(4): 487–495. doi: 10.1021/mp800032f

67. Vanaraj S, Keerthana BB, Preethi K. Biosynthesis, characterization of silver nanoparticles using quercetin from Clitoria ternatea L to enhance toxicity against bacterial biofilm. Journal of Inorganic and Organometallic Polymers and Materials 2017; 27: 1412–1422. doi: 10.1007/s10904-017-0595-8

68. Mahanta S, Prathap S, Ban DK, Paul S. Protein functionalization of ZnO nanostructure exhibits selective and enhanced toxicity to breast cancer cells through oxidative stress-based cell death mechanism. Journal of Photochemistry and Photobiology B: Biology 2017; 173: 376–388. doi: 10.1016/j.jphotobiol.2017.06.015

69. Siddiqui MA, Saquib Q, Ahamed M, et al. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids and Surfaces B: Biointerfaces 2015; 125: 73–81. doi: 10.1016/j.colsurfb.2014.11.014

70. Balasubramaniam MP, Murugan P, Chenthamara D, et al. Synthesis of chitosan-ferulic acid conjugated poly (vinyl alcohol) polymer film for an improved wound healing. Materials Today Communications 2020; 25: 101510. doi: 10.1016/j.mtcomm.2020.101510

71. Khandia R, Vishwakarm P, Dhama A, et al. Molybdenum salts possess potent angiogenic modulatory properties: Validation on chorioallantoic membrane (CAM) of chicken. Asian Journal of Animal and Veterinary Advances 2017; 12(1): 44–49. doi: 10.3923/ajava.2017.44.49


DOI: https://doi.org/10.59400/nmm.v3i1.73
(126 Abstract Views, 52 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Anisha Salim, Subramaniam Sadhasivam

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.