A review on nanosensors to detect diabetes
Abstract
Keywords
Full Text:
PDFReferences
1. Meuleneire F. Management of diabetic foot ulcers using dressings with safetac: A review of case studies. Wounds UK 2008; 4(4): 16–30.
2. Metkar SK, Girigoswami K. Diagnostic biosensors in medicine—A review. Biocatalysis and Agricultural Biotechnology 2019; 17: 271–283. doi: 10.1016/j.bcab.2018.11.029.
3. Lv Y, Jin S, Wang Y, et al. Recent advances in the application of nanomaterials in enzymatic glucose sensors. Journal of the Iranian Chemical Society 2016; 13: 1767–1776. doi: 10.1007/s13738-016-0894-y.
4. Martinkova P, Pohanka M. Biosensors for blood glucose and diabetes diagnosis: Evolution, construction, and current status. Analytical Letters 2015; 48(16): 2509–2532. doi: 10.1080/00032719.2015.1043661.
5. Kashmery HA, Inamuddin. Ternary graphene@polyaniline—TiO2 composite for glucose biofuel cell anode application. International Journal of Hydrogen Energy 2019; 44(39): 22173–22180. doi: 10.1016/j.ijhydene.2019.06.153.
6. Huang W, Ding S, Chen Y, et al. 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Scientific Reports 2017; 7(1): 5220. doi: 10.1038/s41598-017-05528-1.
7. Liu Y, Zhang X, He D, et al. An amperometric glucose biosensor based on a MnO2/graphene composite modified electrode. RSC advances 2016; 6(22): 18654–18661. doi: 10.1039/C6RA02680J.
8. Krishnan SK, Prokhorov Y, Bahena D, et al. Chitosan-covered Pd@Pt core-shell nanocubes for direct electron transfer in electrochemical enzymatic glucose biosensor. ACS Omega 2017; 2(5): 1896–1904. doi: 10.1021/acsomega.7b00060.
9. Pakapongpan S, Poo-arporn RP. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Materials Science and Engineering C 2017; 76: 398–405. doi: 10.1016/j.msec.2017.03.031.
10. Hansen B, Hocevar MA, Ferreira CA. A facile and simple polyaniline-poly (ethylene oxide) based glucose biosensor. Synthetic Metals 2016; 222: 224–231. doi: 10.1016/j.synthmet.2016.10.028.
11. Vukojević V, Djurdjic S, Ognjanovic M, et al. Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. Journal of Electroanalytical Chemistry 2018; 823: 610–616. doi: 10.1016/j.jelechem.2018.07.013.
12. Zhao Y, Li W, Pan L, et al. ZnO-nanorods/graphene heterostructure: A direct electron transfer glucose biosensor. Scientific Reports 2016; 6(1): 32327. doi: 10.1038/srep32327.
13. Vijayaraj K, Hong S, Jin SH, et al. Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide-glucose oxidase biocomposite. Analytical Methods 2016; 8(38): 6974–6981. doi: 10.1039/c6ay02032a.
14. Mansouri N, Babadi AA, Bagheri S, et al. Immobilization of glucose oxidase on 3D graphene thin film: Novel glucose bioanalytical sensing platform. International Journal of Hydrogen Energy 2017; 42(2): 1337–1343. doi: 10.1016/j.ijhydene.2016.10.002.
15. Jeong JM, Yang MH, Kim DS, et al. High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel. Journal of Colloid and Interface Science 2017; 506: 379–385. doi: 10.1016/j.jcis.2017.07.061.
16. Mohapatra J, Ananthoju B, Nair V, et al. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Applied Surface Science 2018; 442: 332–341. doi: 10.1016/j.apsusc.2018.02.124.
17. Chen C, Ran R, Yang Z, et al. An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres. Sensors and Actuators B: Chemical 2018; 256: 63–70. doi: 10.1016./j.snb.2017.10.067.
18. Fang L, Liu B, Liu L, et al. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles—Functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sensors and Actuators B: Chemical 2016; 222: 1096–1102. doi: 100.1016./J.SNB.2015.08.032.
19. He J, Yang H, Zhang Y, et al. Smart nanocomposites of Cu-hemin metal-organic frameworks for electrochemical glucose biosensing. Scientific Reports 2016; 6(1): 36637. doi: 10.1038/srep36637.
20. Li B, Wu X, Shi C, et al. Flexible enzymatic biosensor based on graphene sponge for glucose detection in human sweat. Surfaces and Interfaces 2023; 36: 102525. doi: 10.1016./j.surfin.2022.102525.
21. Bi R, Ma X, Miao K, et al. Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme and Microbial Technology 2023; 162: 110132. doi: 10.1016/j.enzmictec.2022.110132.
22. Phasuksom K, Sirivat A. Chronoampermetric detection of enzymatic glucose sensor based on doped polyindole/MWCNT composites modified onto screen-printed carbon electrode as portable sensing device for diabetes. RSC Advances 2022; 12(44): 28505–28518. doi: 10.1039/D2RA04947C.
23. Sehit E, Altintas Z. Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016–2020). Biosensors and Bioelectronics 2020; 159: 112165. doi: 10.1016/j.bios.2020.112165.
24. Park S, Boo H, Chung TD, et al. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta 2006; 556(1): 46–57. doi: 10.1016/j.aca.2005.05.080.
25. Wilson R, Turner APF. Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics 1992; 7(3): 165–185. doi: 10.1016/0956-5663(92)87013-F.
26. Kim DM, Moon JM, Lee WC, et al. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosensors and Bioelectronics 2017; 91: 276–283. doi: 10.1016/j.bios.2016.12.046.
27. He G, Tian L, Cai Y. et al. Sensitive nonenzymatic electrochemical glucose detection based on hollow porous NiO. Nanoscale Research Letters 2018; 13: 1–10. doi: 10.1186/s11671-017-2406-0.
28. Chen C, Xie Q, Yang D, et al. Recent advances in electrochemical glucose biosensors: A review. Rsc Advances 2013; 3(14): 4473–4491. doi: 10.1039/C2RA22351A.
29. Nambiar S, Yeow JT. Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics 2011; 26(5): 1825–1832. doi: 10.1016/j.bios.2010.09.046.
30. Heli H, Amirizadeh O. Non-enzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure. Marerials Science and Engineering: C 2016; 63: 150–154. doi: 10.1016/j.msec.2016.02.068.
31. Li C, Su Y, Lv X, et al. Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors. Biosensors and Bioelectronics 2012; 38(1): 402–406. doi: 10.1016/j.bios.2012.04.049.
32. Zhong G, Zhang W, Sun Y, et al. A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors and Actuators B: Chemical 2015; 212: 72–77. doi: 10.1016/j.snb.2015.02.003.
33. Wang C, Ma D, Sun Y, et al. Ag-Pt hollow nanoparticles anchored reduced graphene oxide composites for non-enzymatic glucose biosensor. Journal of Materials Science: Materials in Electronics 2016; 27(9): 9370–9378. doi: 10.1007/s10854-016-4979-2.
34. Liu S, Zhang C, Yuan L, et al. Component-controlled synthesis of small-sized Pd-Ag bimetallic alloy nanocrystals and their application in a non-enzymatic glucose biosensor. Particle and Particle Systems Characterization 2013; 30(6): 549–556. doi: 10.1002/ppsc.201200150.
35. Liu P, Zhang M, Xie S, et al. Non-enzymatic glucose biosensor based on palladium-copper oxide nanocomposites synthesized via galvanic replacement reaction. Sensors and Actuators B: Chemical 2017; 253: 552–558. doi: 10.1016/j.snb.2017.07.010.
36. Xia C, Ning W. A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire. Electrochemistry Communications 2010; 12(11): 1581–1584. doi: 10.1016/j.elecom.2010.09.002.
37. Zhao C, Wu X, Zhang X, et al. Facile synthesis of layered CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive nonenzymatic detection of glucose. Journal of Electroanalytical Chemistry 2017; 785: 172–179. doi: 10.1016/j.jelechem.2016.12.039.
38. Sridhar V, Park H. Carbon encapsulated cobalt sulfide nano-particles anchored on reduced graphene oxide as high capacity anodes for sodium-ion batteries and glucose sensor. Journal of Alloys and Compounds 2018; 764: 490–497. doi: 10.1016/j.jallcom.2018.06.098.
39. Chen J, Yin H, Zhou J, et al. Hybrid Ni3N-nitrogen-doped carbon microspheres (Ni3N@C) in situ derived from Ni-MOFs as sensitive non-enzymatic glucose sensors. Materials Technology 2021; 36(5): 286–295. doi: 10.1080/10667857.2020.1751471.
40. Xie F, Cao X, Qu F, et al. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators B Chemical 2018; 255: 1254–1261. doi: 10.1016/j.snb.2017.08.098.
41. Li Y, Guan P, Yu F, et al. CeO2 nanorods embedded in Ni(OH)2 matrix for the non-enzymatic detection of glucose. Nanomaterials 2017; 7(8): 205. doi: 10.3390/nano7080205.
42. Chen H, Rim YS, Wang IC, et al. Quasi-two-dimensional metal oxide semiconductors based ultrasensitive potentiometric biosensors. ACS Nano 2017; 11(5): 4710–4718.
43. Dong Q, Song D, Huang Y, et al. High-temperature annealing enabled iridium oxide nanofibers for both non-enzymatic glucose and solid-state pH sensing. Electrochimica Acta 2018; 281: 117–126. doi: 10.1016/j.electacta.2018.04.205.
44. Huang Y, Kim JS. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles. Langmuir 2011; 27(22): 13861–13867. doi: 10.1021/la203143k.
45. Wei L, Fan Y, Wang H, et al. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochimica Acta 2012; 76: 468–474. doi: 10.1016/j.electacta.2012.05.063.
46. Zeng J. A simple eco-friendly solution phase reduction method for the synthesis of polyhedra platinum nanoparticles with high catalytic activity for methanol electrooxidation. Journal of Material Chemistry 2012; 22(7): 3170–3176. doi: 10.1039/C1JM14413H.
47. Si P, Huang Y, Wang T, et al. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Advances 2013; 3(11): 3487–3502. doi: 10.1039/c2ra22360k.
48. Govindhan M, Adhikari BR, Chen A, et al. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Advances 2014; 4(109): 63741–63760. doi: 10.1039/C4RA10399H.
49. Kimmel DW, LeBlanc G, Meschievitz ME, et al. Electrochemical sensors and biosensors. Analytical Chemistry 2012; 84(2): 685–707. doi: 10.1021/ac202878q.
50. Zhu C, Yang G, Li H, et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical Chemistry 2015; 87(1): 230–249. doi: 10.1021/ac5039863.
51. Tee SY, Teng C, Ye E, et al. Metal nanostructures for non-enzymatic glucose sensing. Materical Science and Engineering C 2017; 70: 1018–1030. doi: 10.1016/j.msec.2016.04.009.
52. Sun CL, Cheng W, Hsu TK, et al. Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis. Electrochemistry Communications 2013; 30: 91–94. doi: 10.1016/j.elecom.2013.02.015.
53. Liu H, Su X, Tian X, et al. Preparation and electrocatalytic performance of functionalized copper-based nanoparticles supported on the gold surface. Electroanalysis 2006; 18(21): 2055–2060. doi: 10.1002/elan.200603598.
54. Dong Q, Ryu H, Lei Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochimica Acta 2021; 370: 137744. doi: 10.1016/j.electacta.2021.137744.
55. Xia Y, Sun K, Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced Materials 2012; 24(18): 2436–2440. doi: 10.1002/adma.201104795.
56. Guisbiers G, Mejia-Rosales S, Khanal S, et al. Gold-copper nano-alloy, “tumbaga”, in the era of nano: Phase diagram and segregation. Nano Letters 2014; 14(11): 6718–6726. doi: 10.1021/nl503584q.
57. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical Reviews 2008; 108(3): 845–910. doi: 10.1021/cr040090g.
58. Zhang M, Liu Y, Wang J, et al. Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose. Microchimica Acta 2019; 186 (2): 1–8. doi: 10.1007/s00604-018-3172-0.
59. Shamsipur M, Tabrizi MA, Karimi Z, et al. Highly sensitive non-enzymatic electrochemical glucose sensor by Nafion/SBA-15-Cu (II) modified glassy carbon electrode. Journal of Electroanalytical Chemistry 2017; 799: 406–412. doi: 10.1016/j.jelechem.2017.06.029.
60. Gong X, Gu Y, Zhang F, et al. High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. Frontiers in Materials 2019; 6: 3. doi: 10.3389/fmats.2019.00003.
61. Pelucarte KD, Hatchell TA, Georga G, et al. Electrospun porous La-Sr-Co-Ni-O nanofibers for highly sensitive non-enzymatic glucose detection. Matericals Advances 2022; 3(4): 2096–2103. doi: 10.1039/D1MA00984B.
62. Li X, Dong H, Fan Q, et al. One-pot, rapid microwave-assisted synthesis of bimetallic metal-organic framework for efficient enzyme-free glucose detection. Microchemical Journal 2022; 179: 107468. doi: 10.1016/j.microc.2022.107468.
63. Haghparas Z, Kordrostami Z, Sorouri M, et al. Highly sensitive non-enzymatic electrochemical glucose sensor based on dumbbell-shaped double-shelled hollow nanoporous CuO/ZnO microstructures. Scientific Reports 2021; 11(1): 1–12. doi: 10.1038/s41598-020-79460-2.
64. Chakraborty P, Deka N, Patra DC, et al. Salivary glucose sensing using highly sensitive and selective non-enzymatic porous NiO nanostructured electrodes. Surfaces and Interfaces 2021; 26: 101324. doi: 10.1016/j.surfin.2021.101324.
65. Luo Y, Liu W, Huang M, et al. Copper nanoparticles decorated halloysite nanotube/polyaniline composites for high performance non-enzymatic glucose sensor. Electrochemical Society 2021; 168(8): 086504. doi: 10.1149/1945-7111/ac1b4d.
66. Rabbani SS, Nisar A, Zafar A, et al. Mesoporous NiCo2S4 nanoflakes as an efficient and durable electrocatalyst for non-enzymatic detection of cholesterol. Nanotechnology 2022; 33(37): 375502. doi: 10.1088/1361-6528/ac75fb.
67. Yang D, Yin R, Gao Y, et al. Fabrication of Cu/graphene layer via laser direct writing for flexible non-enzymatic glucose electrode. In: Wei W, Yue Y (editors). Proceedings of International Conference on Biometrics, Microelectronic Sensors, and Artificial Intelligence (BMSAI); 2022 March 25–27; Guangzhou. Washington: SPIE; 2022. p. 85–90. doi: 10.1117/12.2640279.
68. Xu X, Tan R, Lv X, et al. Non-enzymatic electrochemical detection of glucose using Ni-Cu bimetallic alloy nanoparticles loaded on reduced graphene oxide through a one-step synthesis strategy. Analytical Methods 2021; 13(46): 5628–5637. doi: 10.1039/DIAY01357B.
69. Kachouei MA, Shahrokhian S, Ezzati M, et al. Bimetallic CoZn-MOFs easily derived from CoZn-LDHs, as a suitable platform in fabrication of a non-enzymatic electrochemical sensor for detecting glucose in human fluids. Sensors and Actuators B: Chemical 2021; 344: 130254. doi: 10.1016/j.snb.2021.130254.
70. Xiao H, Cao L, Qin H, et al. Non-enzymatic lactic acid sensor based on AuPtNPs functionalized MoS2 nanosheet as electrode modified materials. Journal of Electroanalytical Chemistry 2021; 903: 115806. doi: 10.1016/j.jelechem.2021.115806.
71. Phetsang S, Kidkhunthod P, Chanlek N, et al. Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application. Scientific Reports 2021; 11(1): 1–13. doi: 10.1038/s41598-021-88747-x.
72. Kachouei MA, Hekmat F, Wang H, et al. Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids. Electrochimica Acta 2022; 428: 140952. doi: 10.1016/jelectacta.2022.140952.
73. Grilli ML. Metal oxides. Metals 2020; 10(6): 820. doi: 10.3390/met10060820.
74. Liu A. Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosensors and Bioelectronics 2008; 24(2): 167–177. doi: 10.1016/j.bios.2008.04.014.
75. Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009; 9(8): 6504–6529. doi: 10.3390/s90806504.
76. Huang J, Wan Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 2009; 9(12): 9903–9924. doi: 10.3390/s912.9903.
77. Saleh Ahammad A, Lee JJ, Rahman MA, et al. Electrochemical sensors based on carbon nanotubes. Sensors 2009; 9(4): 2289–2319. doi: 10.3390/s904022898.
78. Ding Y, Wang Y, Su L, et al. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics 2010; 26(2): 542–548. doi: 10.1016/j.bios.2010.07.050.
79. Li C, Su Li, Zhang S, et al. An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosensors and Bioelectronics 2010; 26(2): 903–907. doi: 10.1016/j.bios.2010.07.007.
80. Wang J, Xu L, Lu Y, et al. Engineered IrO2@NiO core-shell nanowires for sensitive non-enzymatic detection of trace glucose in saliva. Analytical Chemistry 2016; 88(24): 12346–12353. doi: 10.1021/acs.anaichem.6b03558.
81. Wang X, Zhao M, Li H, et al. Introducing Schottky interface as a novel strategy for ultrasensitive nonenzymatic glucose detection. Journal of Electroanalytical Chemistry 2017; 801: 251–257. doi: 10.1016/j.jelechem.2017.07.026.
82. Vinoth V, Subramaniyam G, Anandan S, et al. Non-enzymatic glucose sensor and photocurrent performance of zinc oxide quantum dots supported multi-walled carbon nanotubes. Materials Science and Engineering: B 2021; 265: 115036. doi: 10.1016/j.mseb.2020.115036.
83. Sedaghat S, Piepenburg C, Qi Z, et al. Laser-induced mesoporous nickel oxide as a highly sensitive nonenzymatic glucose sensor. ACS Applied Nano Materials 2020; 3(6): 5260–5270. doi: 10.1021/acsanm.0c00659.
84. Li S, Bai W, Zhang X, et al. NiO/Cu-TCPP hybrid nanosheets as an efficient substrate for supercapacitor and sensing applications. Journal of The Electrochemical Society 2020; 167(2): 027534. doi: 10.1149/1945-7111/ab6d4c.
85. Maghsoudi S, Mohammadi A. Reduced graphene oxide nanosheets decorated with cobalt oxide nanoparticles: A nonenzymatic electrochemical approach for glucose detection. Synthetic Metals 2020; 269: 116543. doi: 10.1016/j.synthmet.2020.116543.
86. Balasubramanian P, Annalakshmi M, Chen S, Chen TW. Ultrasensitive non-enzymatic electrochemical sensing of glucose in noninvasive samples using interconnected nanosheets-like NiMnO3 as a promising electrocatalyst. Sensors and Actuators B: Chemical 2019; 299: 126974. doi: 10.1016/j.snb.2019.126974.
87. Al-Mokaram AMAAA, Yahya R, Abdi MM. One-step electrochemical deposition of Polypyrrole-Chitosan-Iron oxide nanocomposite films for non-enzymatic glucose biosensor. Materials Letters 2016; 183: 90–93. doi: 10.1016/j.matlet.2016.07.049.
88. Zhang L, Ye C, Li X, et al. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Letters 2018; 10: 1–10. doi: 10.1007/s40820-017-0178-9.
89. Wei C, Li X, Xiang W, et al. MOF derived seaweed-like CoCu oxides nanorod arrays for electrochemical non-enzymatic glucose sensing with ultrahigh sensitivity. Sensors and Actuators B: Chemical 2020; 324: 128773. doi: 10.1016/j.snb.2020.128773.
90. Zhao Z, Li Q, Sun Y, et al. Highly sensitive and portable electrochemical detection system based on AuNPs@CuO NWs/Cu2O/CF hierarchical nanostructures for enzymeless glucose sensing. Sensors and Actuators B: Chemical 2021; 345: 130379. doi: 10.1016/j.snb.2021.130379.
91. Hou S, Lu N, Zhu Y, et al. Photoinduced phase-transition on CuO electrospun nanofibers over the TiO2 photosensitizer for enhancing non-enzymatic glucose-sensing performance. Journal of Alloys and Compounds 2022; 900: 163409. doi: 10.1016/j.jallcom.2021.163409.
92. Barbee B, Muchharla B, Adedeji A, et al. Cu and Ni co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection. Scientific Reports 2022; 12(1): 7507. doi: 10.1038/s41598-022-11563-4.
93. Liu A, Liu E, Yang G, et al. Non-enzymatic glucose detection using nitrogen-doped diamond-like carbon electrodes modified with gold nanoclusters. Pure and Applied Chemistry 2010; 82(11): 2217–2229. doi: 10.1351/PAC-CON-09-11-11.
94. Guerfi A, Trottier J, Boyano I, et al. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. Journal of Power Sources 2014; 248: 1099–1104. doi: 10.1016/j.jpowsour.2013.09.082.
95. Halali MA. Electrically conductive membranes for water and wastewater treatment: Their surface properties, antifouling mechanisms, and applications [PhD thesis]. Hamilton: McMaster University; 2021.
96. Dutta K, Das S, Rana D, et al. Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: A review. Polymer Reviews 2015; 55(1): 1–56. doi: 10.1080/15583724.2014.958771.
97. Saranya K, Rameez M, Subramania A. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—An overview. European Polymer Journal 2015; 66: 207–227. doi: 10.1016/j.eurpolymj.2015.01.049.
98. Naseri M, Fotouhi L, Ehsani A, et al. Novel electroactive nanocomposite of POAP for highly efficient energy storage and electrocatalyst: Electrosynthesis and electrochemical performance. Journal of Colloid and Interface Science 2016; 484: 308–313. doi: 10.1016/j.jcis.2016.08.071.
99. Bagheri H, Ayazi Z, Naderi M. Conductive polymer-based microextraction methods: A review. Analytica Chimica Acta 2013; 767: 1–13. doi: 10.1016/j.aca.2012.12.013.
100. Prehn R, Cortina-Puig M, Muñoz FX. A non-enzymatic glucose sensor based on the use of gold micropillar array electrodes. Journal of The Electrochemical Society 2012; 159(5): F134. doi: 10.1149/2.018206jes.
101. Li T, Zhu K, He S, et al. Sensitive detection of glucose based on gold nanoparticles assisted silver mirror reaction. Analyst 2011; 136(14): 2893–2896. doi: 10.1039/C1AN15256D.
102. Kyomihumbo HD, Feleni U. Electroconductive green metal-polyaniline nanocomposites: Synthesis and application in sensors. Electroanalysis 2022; 35(2): e202100636. doi: 10.1002/elan.202100636.
103. Gopalan AI, Muthuchamy N, Komathi S, et al. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosensors and Bioelectronics 2016; 84: 53–63. doi: 10.1016/j.bios.2015.10.079.
104. Xu M, Song Y, Ye Y, et al. A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sensors and Actuators B: Chemical 2017; 252: 1187–1193. doi: 10.1016/j.snb.2017.07.147.
105. Ma K, Sinha A, Dang X, et al. Electrochemical preparation of gold nanoparticles-polypyrrole co-decorated 2D MoS2 nanocomposite sensor for sensitive detection of glucose. Journal of The Electrochemical Society 2019; 166(2): B147. doi: 10.1149/2.1231902jes.
106. Wang L, Tricard S, Yue P, et al. Polypyrrole and graphene quantum dots@Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine. Biosensors and Bioelectronics 2016; 77: 1112–1118. doi: 10.1016/j.bios.2015.10.088.
107. Miao Z, Wang P, Zhong A, et al. Development of a glucose biosensor based on electrodeposited gold nanoparticles-polyvinylpyrrolidone-polyan- iline nanocomposites. Journal of Electroanalytical Chemistry 2015; 756: 153–160. doi: 10.1016/j.jelechem.2015.08.025.
108. Ghanbari K, Babaei Z. Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Analytical Biochemistry 2016; 498: 37–46.doi: 10.1016/j.ab.2016.01.006.
109. Sheng G, Xu G, Xu S, et al. Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Advances 2015; 5(27): 20741–20746. doi: 10.1039/C4RA15755A.
110. Hui N, Wang S, Xie H, et al. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly (3, 4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sensors and Actuators B: Chemical 2015; 221: 606–613. doi: 10.1016/j.snb.2015.07.011.
111. Ahmad MW, Verma SK, Yang DJ, et al. Synthesis of silver nanoparticles-decorated poly (m-aminophenol) nanofibers and their application in a non-enzymatic glucose biosensor. Journal of Macromolecular Science, Part A Pure and Applied Chemistry 2021; 58(7): 461–471. doi: 10601325.2021.1886585.
112. Medhi A, Mohanta D. Deciphering highly sensitive non-enzymatic glucose sensor based on nanoscale CuO/PEDOT-MoS2 electrodes in chronoamperometry. ESC Advances 2022; 1(4): 046504. doi: 10.1149/2754-2734/ac9324.
113. Manafi-Yeldaghermani R, Shahrokhian S, Kahnamouei MH. Facile preparation of a highly sensitive non-enzymatic glucose sensor based on the composite of Cu(OH)2 nanotubes arrays and conductive polypyrrole. Microchemical Journal 2021; 169: 106636. doi: 10.1016/j.microc.2021.106636.
114. Meng A, Hong X, Zhang H, et al. Nickel sulfide nanoworm network architecture as a binder-free high-performance non-enzymatic glucose sensor. Microchica Acta 2021; 188(2): 1–9. doi: 10.1007/s00604-020-04665-1.
115. Sharma KP, Shin M, Awasthi GP, et al. Chitosan polymer matrix-derived nanocomposite (CuS/NSC) for non-enzymatic electrochemical glucose sensor. International Journal of Biological Macromolecules 2022; 206: 708–717. doi: 10.1016/j.ijbiomac.2022.02.142.
116. Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors 2019; 19(23): 5311. doi: 10.3390/s19235311.
117. Jain N, Gupta E, Kanu NJ, et al. Plethora of carbon nanotubes applications in various fields—A state-of-the-art-review. Smart Science 2022; 10(1): 1–24. doi: 10.1080/23080477.2021.0940752.
118. Kumar S, Nehra M, Kedia D, et al. Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science 2018; 64: 219–253. doi: 10.1016/j.pecs.2017.10.005.
119. Liu X, Zhang S, Pan B, et al. Potential of carbon nanotubes in water treatment. Recent Progress in Carbon Nanotube Research 2012; 201110(5772): 51332. doi: 10.5772/51332.
120. Si J, Xu L, Zhu M, et al. Advances in high-performance carbon-nanotube thin-film electronics. Advanced Electronic Materials 2019; 5(8): 1900122. doi: 10.1002/aelm.201900122.
121. De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: Present and future commercial applications. Science 2013; 339(6119): 535–539. doi: 10.1126/science.1222453.
122. He H, Pham-Huy LA, Dramou P, et al. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Research International 2013; 2013. doi: 10.1155/2013/578290.
123. Sireesha M, Jagadeesh BV, Kranthi Kiran AS, et al. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 2018; 4(2): 36–57. doi: 10.1080/20550324.2018.1478765.
124. Li G, Liao JM, Hu GQ, et al. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosensors and Bioelectronics 2005; 20(10): 2140–2144. doi: 10.1016/j.bios.2004.09.005.
125. Rasheed T, Hassan AA, Kausar F, et al. Carbon nanotubes assisted analytical detection—Sensing/delivery cues for environmental and biomedical monitoring. TrAC Trends in Analytical Chemistry 2020; 132: 116066. doi: 10.1016/J.TRAC.2020.116066.
126. Baghayeri M, Amiri A, Farhadi S. Development of non-enzymatic glucose sensor based on efficient loading Ag nanoparticles on functionalized carbon nanotubes. Sensors and Actuators B: Chemical 2016; 225: 354–362. doi: 10.1016/j.snb.2015.11.003.
127. Ramachandran K, Babu K, Raj Kumar T, et al. Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Scientific Reports 2016; 6(1): 1–12. doi: 10.1016/j.snb.2015.11.003.
128. Lin MH, Gupta S, Chang C, et al. Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva. Microchemical Journal 2022; 180: 107547. doi: 10.1016/j.microc.2022.107547.
129. Meng L, Jin J, Yang G, et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Analytical Chemistry 2009; 81(17): 7271–7280. doi: 10.1021/ac901005p.
130. Fall B, Sall DD, Hémadi M, et al. Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs). Sensors and Actuators Reports 2023; 5: 100136. doi: 10.1016/j.snr.2022.100136.
131. Yang J, Lee H, Cho M, et al. Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sensors and Actuators B: Chemical 2012; 171: 374–379. doi: 10.1016/j.snb.20212.04.070.
132. Nawaz MAH, Majdinasab M, Latif U, et al. Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry. Journal of Pharmaceutical and Biomedical Analysis 2018; 159: 398–405. doi: 10.1016/j.jpba.2018.07.005.
133. Promsuwan K, Kachatong N, Limbut W. Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochimica Acta 2019; 320: 134621. doi: 10.1016/j.electacta.2019.134621.
134. Wang F, Chen X, Chen L, et al. High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel(II)-based MOF/carbon nanotubes composite. Materials Science and Engineering: C 2019; 96: 41–50. doi: 10.1016./j.msec.2018.11.004.
135. Yang J, Zhang W, Gunasekaran S. An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosensors and Bioelectronics 2010; 26(1): 279–284. doi: 10.1016/j.bios.2010.06.014.
136. Wang R, Liu X, Zhao Y, et al. Novel electrochemical non-enzymatic glucose sensor based on 3D Au@Pt core-shell nanoparticles decorated graphene oxide/multi-walled carbon nanotubes composite. Microchemical Journal 2022; 174: 107061. doi: 10.1016/j.microc.2021.107061.
137. Arikan K, Burhan H, Bayat R, et al. Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel-cobalt nanocomposites on f-MWCNT. Chemosphere 2022; 291: 132720. doi: 10.1016/j.chemosphere.2021.132720.
138. Liu N, Xiang X, Sun M, et al. Flexible hydrogel non-enzymatic QCM sensor for continuous glucose monitoring. Biosensors and Bioelectronics: X 2022; 10: 100110. doi: 10.1016/j.biosx.2022.100110.
139. Xu B, Huang J, Ding L, et al. Graphene oxide-functionalized long period fiber grating for ultrafast label-free glucose biosensor. Materials Science and Engineering: C 2020; 107: 110329. doi: 10.1016/j.msec.2019.110329.
140. Geim AK. Graphene: Status and prospects. Science 2009; 324(5934): 1530–1534. doi: 10.1126/science.1158877.
141. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chemical Reviews 2010; 110(1): 132–145. doi: 10.1021/cr900070d.
142. Panda P, Pal K, Chakroborty S. Smart advancements of key challenges in graphene-assembly glucose sensor technologies: A mini review. Materials Letters 2021; 303: 130508. doi: 10.1016/j.matlet.2021.130508.
143. Reghunath devi K, Singh KK. Recent advances in graphene based electrochemical glucose sensor. Nano-Structures & Nano-Objects 2021; 26: 100750. doi: 10.1016/j.nanoso.2021.100750.
144. Banks CE, Crossley A, Salter C, et al. Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angewandte Chemie International Edition 2006; 45(16): 2533–2537. doi: 10.1002/anie.200600033.
145. Alwarappan S, Liu C, Kumar A, Li CZ. Enzyme-doped graphene nanosheets for enhanced glucose biosensing. Analytical Chemistry 2010; 114(30): 12920–12924. doi: 10.1021/jp103273z.
146. Fu X, Chen Z, Shen S, et al. Highly sensitive nonenzymatic glucose sensor based on reduced graphene oxide/ultrasmall Pt nanowire nanocomposites. International Journal of Electrochemical Science 2018; 13(5): 4817–4826. doi: 10.20964/2018.05.46.
147. Batool R, Rhouati A, Nawaz MH, et al. A review of the construction of nano-hybrids for electrochemical biosensing of glucose. Biosensors 2019; 9(1): 46. doi: 10.3390/bios9010046.
148. Dhara K, Ramachandran T, Nair BG, Babu TGS. Single step synthesis of Au-CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. Journal of Electroanalytical Chemistry 2015; 743: 1–9. doi: 10.1016/j.jelechem.2015.02.005.
149. Zang Z, Hao W, Li X, et al. Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochimica Acta 2018; 277: 176–184. doi: 10.1016/j.electacta.2018.05.016.
150. Rahsepar M, Foroughi F, Kim H. A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value. Sensors and Actuators B: Chemical 2019; 282: 322–330. doi: 10.1016/j.snb.2018.11.078.
151. Xiao F, Li Y, Zan X, et al. Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Advanced Functional Materials 2012; 22(12): 2487–2494. doi: 10.1002/adfm.201200191.
152. Yang S, Liu L, Wang G, et al. One-pot synthesis of Mn3O4 nanoparticles decorated with nitrogen-doped reduced graphene oxide for sensitive nonenzymatic glucose sensing. Journal of Electroanalytical Chemistry 2015; 755: 15–21. doi: 10.1016/j.jelechem.2015.07.021.
153. Wang L, Lu X, Wen C, et al. One-step synthesis of Pt-NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. Journal of Materials Chemistry A 2015; 3(2): 608–616. doi: 10.1039/C4TA04724A.
154. Lakshmi G, Sharma A, Solanki PR, Avasthi DK. Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-less cholesterol biosensors. Nanotechnology 2016; 27(34): 345101. doi: 10.1088/0957-4484/27/34/345101.
155. Alexander S, Baraneedharan P, Balasubrahmanyan S, Ramaprabhu S. Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. European Polymer Journal 2017; 86: 106–116. doi: 10.1016/j.eurpolymj.2016.11.024.
156. Yan X, Gu Y, Li C, et al. A non-enzymatic glucose sensor based on the CuS nanoflakes-reduced graphene oxide nanocomposite. Analytical Methods 2018; 10(3): 381–388. doi: 10.1039/C7AY02290E.
157. Chaiyo S, Mehmeti E, Siangproh W, et al. Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite. Biosensors and Bioelectronics 2018; 102: 113–120. doi: 10.1016/j.bios.2017.11.015.
158. Janyasupab M, Promptmas C. Development of non-enzymatic N-doped graphene supported cobalt/iron amperometric based sensor for glucose detection in urine. In: Proceedig of the 2018 IEEE–EMBS Conference on Biomedical Engineering and Sciences (IECBES); 2018 Dec 3–6; Sarawak. New York: IEEE; 2019.
159. Karakuş S, Taşaltın C, Gürol İ, et al. Design of the polyacrylonitrile-reduced graphene oxide nanocomposite-based non-enzymatic electrochemical biosensor for glucose detection. Journal of Materials Science: Materials in Electronics 2022; 33(23): 18400–18409. doi: 10.1007/s10854-022-08694-9.
160. Adeniyi O, Nwahara N, Mwanza D, et al. High-performance non-enzymatic glucose sensing on nanocomposite electrocatalysts of nickel phthalocyanine nanorods and nitrogen doped-reduced graphene oxide nanosheets. Applied Surface Science 2022; 609: 155234. doi: 10.1016/j.apsusc.2022.155234.
161. Altintas Z, Takiden A, Utesch T, et al. Integrated approaches toward high-affinity artificial protein binders obtained via computationally simulated epitopes for protein recognition. Advanced Functional Materials 2019; 29(15): 1807332. doi: 10.1002/adfm.201807332.
162. Waffo AFT, Yesildag C, Caserta G, et al. Fully electrochemical MIP sensor for artemisinin. Sensors and Actuators B: Chemical 2018; 275: 163–173. doi: 10.1016/j.snb.2018.08.018.
163. Cheong WJ, Yang SH, Ali F. Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science 2013; 36(3): 609–628. doi: 10.1002/jssc.201200784.
164. Beltran A, Borrull F, Marcé RM, Cormack PAG. Molecularly-imprinted polymers: Useful sorbents for selective extractions. TrAC Trends in Analytical Chemistry 2010; 29(11): 1363–1375. doi: 10.1016/j.trac.2010.07.020.
165. Schirhagl R. Bioapplications for molecularly imprinted polymers. Analytical Chemistry 2014; 86(1): 250–261. doi: 10.1021/ac401251j.
166. He S, Zhang L, Bai S, et al. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. European Polymer Journal 2021; 143: 110179. doi: 10.1016/j.eurpolymj.2020.110179.
167. Ramström O, Mosbach K. Synthesis and catalysis by molecularly imprinted materials. Current Opinion in Chemical Biology 1999; 3(6): 759–764. doi: 10.1016/S1367-5931(99)00037-X.
168. Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Reviews 2000; 100(7): 2495–2504. doi: 10.1021/cr990099w.
169. Wulff G. Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews 2002; 102(1): 1–28. doi: 10.1021/cr980039a.
170. Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1981; 182(2): 687–692. doi: 10.1002/macp.1981.021820240.
171. Zhu W, Xu L, Zhu C, et al. Magnetically controlled electrochemical sensing membrane based on multifunctional molecularly imprinted polymers for detection of insulin. Electrochimica Acta 2016; 218: 91–100. doi: 10.1016/j.electacta.2016.09.108.
172. Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosensors and Bioelectronics 2018; 100: 56–70. doi: 10.1016/j.bios.2017.08.058.
173. Wardani NI, Kangkamano T, Wannapob R, et al. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta 2023; 254: 124137. doi: 10.1016/j.talanta.2022.124137.
174. Zheng W, Wu H, Jiang Y, et al. A molecularly-imprinted-electrochemical-sensor modified with nano-carbon-dots with high sensitivity and selectivity for rapid determination of glucose. Analytical Biochemistry 2018; 555: 42–49. doi: 10.1016/j.ab.2018.06.004.
175. Alexander S, Baraneedharan P, Balasubrahmanyan S, Ramaprabhu S. Highly sensitive and selective non enzymatic electrochemical glucose sensors based on graphene oxide-molecular imprinted polymer. Materials Science and Engineering: C 2017; 78: 124–129. doi: 10.1016/j.msec.2017.04.045.
176. Omidvar AH, Shahri AA, Serrano ALC, et al. A highly sensitive molecularly imprinted polymer (MIP)-coated microwave glucose sensor. Sensors 2022; 22(22): 8648. doi: 10.3390/s22228648.
177. Diouf A, Bouchikhi B, El Bari N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. Materials Science and Engineering: C 2019; 98: 1196–1209. doi: 10.1016/j.msec.2019.01.001.
178. Caldara M, Lowdon JW, Rogosic R, et al. Thermal detection of glucose in urine using a molecularly imprinted polymer as a recognition element. ACS Sensors 2021; 6(12): 4515–4525. doi: 10.1021/acssensors.1c02223.
179. Chen Z, Wright C, Dincel O, et al. A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors 2020; 20(4): 1098. doi: 10.3390/s20041098.
180. Roy S, Nagabooshanam S, Chauhan N, et al. Design and development of a novel flexible molecularly imprinted electroanalytical sensor for the monitoring of diabetic foot ulcers. Surfaces and Interfaces 2021; 26: 101310. doi: 10.1016/j.surfin.2021.101310.
181. Peng C, Miao L, Qiu D, Chen S. Co3O4-chitosan/biomass-derived porous carbon molecularly imprinted polymer integrated electrode for selective detection of glucose. Ceramics International 2022; 48(16): 23137–23144. doi: 10.1016/j.ceramint.2022.04.294.
DOI: https://doi.org/10.59400/nmm.v3i1.32
(159 Abstract Views, 70 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Zahra Mofidi, Mahtab Mortazavi, Sohrab Nikazar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.