A brief review on basic fundamentals of nanoparticle (NPs)
Abstract
According to studies made by previous researchers there are various technical problems associated with liposomes which can be avoided by designing colloidal drugs carrier like nanoparticles with nanotechnology. Now a days they are beneficial in the field of agriculture, veterinary, pharmaceutical, textile technologies. Site specific delivery of encapsulated drugs can be formulated with a nanometer size range which can be injected into the general circulation. The objective of this review is to explain the potential of NPs and nanotechnology associated with their characters and classifications, synthesis and application as the emerging scopes for NPs, rather will attract everyone’s attention. The aim of the present work is to characterize biodegradable nanoparticulate systems for oral controlled release, while numerous publications have appeared on this by international research teams, the research on polymeric nanoparticles has been primarily performed by a few research groups in Europe. Nanoparticles are being investigated as an alternative colloidal drug delivery system that could potentially avoid some of the technical problems observed with other drug delivery system.
Keywords
Full Text:
PDFReferences
1. Afzal O, Altamimi ASA, Nadeem MS, et al. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials 2022; 12(24): 4494. doi: 10.3390/nano12244494
2. Gatoo MA, Naseem S, Arfat MY, et al. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Research International 2014; 2014: 498420. doi: 10.1155/2014/498420
3. Lieberman H. Pharmaceutical Dosage Forms: Disperse Systems, 2nd ed. CRC Press; 2019. pp. 87–89.
4. Amiji MM. Nanotechnology-Improving Targeted Drug Delivery Drug Delivery. 2007.
5. Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery part 1: Background and applications. Tropical Journal of Pharmaceutical Research 2009; 8(3): 265–274. doi: 10.4314/tjpr.v8i3.44546
6. Elizabeth Gabriela Macedo Flores. Advantages and Disadvantages of Nanotechnology, Molecular cloud, 2021.
7. Mehnert W, Mader K. Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews 2001; 47(2–3): 165–196. doi: 10.1016/s0169-409x(01)00105-3
8. Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: An update. Journal of Biological Inorganic Chemistry 2018; 23(8): 1185–1204. doi: 10.1007/s00775-018-1600-6
9. Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: Promising vehicle for bioactive drugs. Biological and Pharmaceutical Bulletin 2006; 29(9): 1790–1798. doi: 10.1248/bpb.29.1790
10. Buzea C, Pacheco I, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4): MR17–MR71. doi: 10.1116/1.2815690
11. Vollath DD, Szabo V, Haubelt JJ. European Ceramic Society 1997; 17(11): 1317.
12. Phan HT, Haes AJ. What does nanoparticles stability mean? The Journal of Physical Chemistry C 2019; 123(27): 16495–16507. doi: 10.1021/acs.jpcc.9b00913
13. Abbas M. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s patients. Polymers 2021; 13(7): 1051. doi: 10.3390/polym13071051
14. Li S, Zhang H, Chen K, et al. Application of chitosan/alginate nanoparticle in oral drug delivery systems: Prospects and challenges. Drug Delivery 2022; 29(1): 1142–1149. doi: 10.1080/10717544.2022.2058646
15. Seikmann B, Westesen K. Melt-homogenized solid lipid nanoparticles stabilized by the non-ionic surfactant tyloxapol. I. Preparation and particle size determination. Pharmaceutical and Pharmacological Letters 1994; 3(5): 194–197.
16. Ealia SAM, Saravanakumar MP. A review on classification, characterization, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering 2017; 263(3): 032019. doi: 10.1088/1757-899X/263/3/032019
17. Khan I, Saeed K, Khan I. Nanoparticle: Properties, applications and toxicities. Arabian Journal of Chemistry 2019; 12(7): 908–931. doi: 10.1016/j.arabjc.2017.05.011
18. Berube D, Cummings C, Cacciatore M, et al. Characteristic and classification of nanoparticles: Expert Delhi survey. Nanotixicology 2011; 5(2): 236–243. doi: 10.3109/17435390.2010.521633
19. Rose J, Auffan M, Proulx O, et al. Physicochemical properties of nanoparticles in relation with toxicity. In: Bhushan B (editor). Encyclopedia of Nanotechnology. Springer, Dordrecht; 2012. p. 2085.
20. Mirzadeh E, Akhbari K. Synthesis of nanomaterials with desirable morphologies from metal-organic frameworks for various applications. CrystEngComm 2016; 18(39): 7410–7424. doi: 10.1039/C6CE01076H
21. Wang Z, Pan X, He Y, et al. Piezoelectric nanowires in energy harvesting applications. Advances in Materials Science and Engineering 2015; 2015: 165631. doi: 10.1155/2015/165631
22. Emery AA, Saal JE, Kirklin S, et al. High-throughput computational screening of perovskites for thermochemical water splitting applications. Chemistry of Materials 2016; 28(16): 5621–5634. doi: 10.1021/acs.chemmater.6b01182
23. Giannini C, Ladisa M, Altamura D, et al. X-ray diffraction: A powerful technique for multiple length-scale structural analysis of nanomaterials. Crystals 2016; 6(8): 87. doi: 10.3390/cryst6080087
24. Ingham B. X-ray scattering characterisation of nanoparticles. Crystallography Reviews 2015; 21(4): 229–303. doi: 10.1080/0889311X.2015.1024114
25. Avasare V, Zhang Z, Avasare D, et al. Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. International Journal of Energy Research 2015; 39(12): 1714–1719. doi: 10.1002/er.3372
26. Yoshioka, T., Hashida, M., Muranishi, S. and Sezaki, 11. (1981) Int. J. Pharm., 81,131.
27. Lykhach Y, Kozlov SM, Skála T, et al. Counting electrons on supported nanoparticles. Nature Materials 2015; doi: 10.1038/nmat4500
28. Wang Y, Xia Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Letters 2004; 4(10): 2047–2050. doi: 10.1021/nl048689j
29. Qi M, Zhang K, Li S, et al. Superparamagnetic Fe3O4 nanoparticles: Synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New Journal of Chemistry 2016; 40(5): 4480–4491. doi: 10.1039/c5nj02441b
30. QuZ, Liu P, Yang X, et al. Microstructure and characteristic of BiVO4 prepared under different pH values: Photocatalytic efficiency and antibacterial activity. Materials 2016; 9(3): 129. doi: 10.3390/ma9030129
31. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters 2008; 3: 397–415. doi: 10.1007/s11671-008-9174-9
32. Reiss G, Hütten A. Applications beyond data storage. Nature Materials 2005; 4: 725–726. doi: 10.1038/nmat1494
33. Sinha VR, Srivastava S, Goel H, Jindal V. Solid Lipid Nanoparticles (SLN’S)—Trends and implications in drug targeting. International Journal of Advances in Pharmaceutical Sciences 2010; 1(3): 212–238. doi: 10.5138/ijaps.2010.0976.1055.01027
34. Reddy LH, Adhikari JS, Dwarakanath BSR, et al. Tumoricidal effects of etoposide incorporated into solid lipid nanoparticles after intraperitoneal administration in Daltons’s lymphoma bearing mice. The AAPS Journal 2006; 8(2): E254–262. doi: 10.1007/BF02854895
35. Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. Journal of Microencapsulation 2002; 19(1): 1–10. doi: 10.1080/713817583
36. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews 2001; 47(1): 65–81. doi: 10.1016/s0169-409x(00)00122-8
37. Lai F, Wissing SA, Muller RH, Fadda AM. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agriculture application: Preparation and characterization. AAPS PharmSciTech 2006; 7(1): E10. doi: 10.1208/pt070102
38. Mukherjee S, Ray S, Thakur RS. A review solid lipid nanoparticle. Journal of Pharmaceutical Sciences 2009; 22(2): 131–38.
39. Sjöström B, Kaplun A, Talmon Y, Cabane B. Structures of nanoparticles prepared from oil-in-water emulsions. Pharmaceutical Research 1995; 12(1): 39–48. doi: 10.1023/a:1016278302046
40. Hu EQ, Yuan H, Zhang HH, Fang M. Nanoparticulate system of nanotechnology. International Journal of Pharmaceutics 2002; 239: 121–128.
41. Kreuter J. Evaluation of nanoparticles as drug-delivery systems. Preparation methods. Pharmaceutica Acta Helvetiae 1983; 1: 58–196.
42. Lin C, Gao H, Ouyang L. Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. Journal of Controlled Release 2021; 337: 494–504. doi: 10.1016/j.jconrel.2021.08.002
43. Jahnke S. The theory of high-pressure homogenization. In: Muller RH, Benita S, John B (editors). Emulsions and Nanosuspension for the Formulation of Poorly Soluble Drugs, 1st ed. Medpharm; 1998. pp. 177–200.
44. Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. International Journal of Pharmaceutics 2004; 278(1): 71–77. doi: 10.1016/j.ijpharm.2004.02.032
45. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 2006; 61(5): 375–386.
46. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews 2002; 54: S131–155. doi: 10.1016/s0169-409x(02)00118-7
47. Ahlin P, Krishlt J, Ahlin F, Šmíd J. Optimization of procedure parameters, and physical stability of solid lipid nanoparticles in the dispersion. Acta Pharmaceutica 1998; 48(4): 257–267.
48. Gasco MR. Method for Producing Nanospheres Having a Narrow Size Distribution. U.S. Patent 188837, 1993.
49. Gasco MR. Method for producing nanospheres from warm microemulsions. Pharmaceutical Technology Europe 1997; 9: 52–58.
50. Bunjes H, Seikmann B, Westesen K. Emulsions of supercooled melts—A novel drug delivery system. In: Benita S (editor). Submicron Emulsions in Drug and Delivery. Harwood Academic Publishers, Amsterdam; 1998. pp.175–204.
51. Sjöström B, Bergenståhl B. Preparation of submicrron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholestearyl acetate. International Journal of Pharmaceutics 1992; 88(1–3): 53–62. doi: 10.1016/0378-5173(92)90303-J
52. Singh KH, Shinde UA. Development and evaluation of novel polymeric nanoparticles of brimonidine tartrate. Current Drug Delivery 2010; 7(30): 244–251. doi: 10.2174/156720110791561008
53. Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 2021; 20: 101–124. doi: 10.1038/s41573-020-0090-8
54. Hu FQ, Yuan H, Zhang HH, Fang M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. International Journal of Pharmaceutics 2002; 239(1–2): 121–128. doi: 10.1016/s0378-5173(02)00081-9
55. Rastegari E, Hsiao YJ, Lai WY, et al. An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics 2021; 13(7): 1067. doi: 10.3390/pharmaceutics13071067
56. Yang G, Liu Y, Wang H, et al. Bioinspired core-shell nanoparticles for hydrophobic drug delivery. Angewandte Chemie International Edition 2019; 58(40): 14357–14364. doi: 10.1002/anie.201908357
57. Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology 2018; 16: 71. doi: 10.1186/s12951-018-0392-8
58. Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Advanced Materials 2015; 27(45): 7261–7284. doi: 10.1002/adma.201502422
59. Schlorf T, Meincke M, Kossel E, et al. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. International Journal of Molecular Sciences 2010; 12(1): 12–23. doi: 10.3390/ijms12010012
60. Schröder U, Segrén S, Gemmefors C, et al. Magnetic carbohydrate nanoparticles for affinity cell separation. Journal of Immunological Methods 1986; 93(1): 45–53. doi: 10.1016/0022-1759(86)90431-x
61. Komarneni S. Nanophase materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods. Current Science 2003; 85(12): 1730–1734.
62. Fessi H, Devissaguet JP, Puisieux F, Thies C (1988) French Pat 2 608 988
63. Schäf O, Ghobarkar H, Knauth P. Hydrothermal synthesis of nanomaterials. In: Knauth P, Schoonman J (editors). Nanostructured Materials. Springer, Boston, MA; 2004. pp. 23–41.
64. Yu SH. Hydrothermal/solvothermal processing of advanced ceramic materials (Japanese). Journal of the Ceramic Society of Japan 2001; 109(5): S65–S75.
65. Kour P, Deeksha, Yadav K. Electrochemical performance of mixed-phase 1T/2H MoS2 synthesized by conventional hydrothermal v/s microwave-assisted hydrothermal method for supercapacitor applications. Journal of Alloys and Compounds 2022; 922: 166194. doi: 10.1016/j.jallcom.2022.166194
66. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences 2019; 1(6): 607. doi: 10.1007/s42452-019-0592-3
67. Niederberger M, Pinna N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application. Springer London; 2009.
68. Nair LS, Laurencin CT. Silver nanoparticles: Synthesis and therapeutic applications. Journal of Biomedical Nanotechnology 2007; 3(4): 301–316. doi: 10.1166/jbn.2007.041
69. Azadani RN, Sabbagh M, Salehi H, et al. Sol-gel: Uncomplicated, routine and affordable synthesis procedure for utilization of composites in drug delivery. Journal of Composites and Compounds 2021; 3(6): 57–70. doi: 10.52547/jcc.3.1.6
70. Brinker CJ, Frye GC, Hurd AJ, Ashley CS. Fundamentals of sol-gel dip coating. Thin Solid Films 1991; 201(1): 97–108. doi.org/10.1016/0040-6090(91)90158-T
71. Zhang W, Cheng RR, Bi HH, et al. A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Materials 2021; 36(1): 69–81. doi: 10.1016/S1872-5805(21)60005-7
72. Palmqvist AEC. Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Current Opinion in Colloid & Interface Science 2003; 8(2): 145–155. doi: 10.1016/S1359-0294(03)00020-7
73. Malgras V, Ji Q, Kamachi Y, et al. Templated synthesis for nanoarchitectured porous materials. Bulletin of the Chemical Society of Japan 2013; 88(9): 1171–1200. doi: 10.1246/bcsj.20150143
74. Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids. Advances in Colloid and Interface Science 2013; 189–190: 21–41. doi: 10.1016/j.cis.2012.12.002
75. Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews 2020; 405: 213111. doi: 10.1016/j.ccr.2019.213111
76. Soler-Illia GJDA, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews 2002; 102(11): 4093–4138. doi: 10.1021/cr0200062
77. Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021; 2(6): 1821–1871. doi: 10.1039/D0MA00807A
78. Lu HS, Zhang H, Liu R, et al. Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts. Applied Surface Science 2017; 392: 402–409. doi: 10.1016/j.apsusc.2016.09.045
79. Deng Y, Wei J, Sun Z, Zhao D. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chemical Society Reviews 2013; 42(9): 4054–4070. doi: 10.1039/C2CS35426H
80. Xu Y, Zhang B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chemical Society Reviews 2014; 43(8): 2439–2450. doi: 10.1039/C3CS60351B
81. Cansell F, Aymonier C. Design of functional nanostructured materials using supercritical fluids. The Journal of Supercritical Fluids 2009; 47(3): 508–516. doi: 10.1016/j.supflu.2008.10.002
82. Malik MA, Wani MY, Hashim MA. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian Journal of Chemistry 2012; 5(4): 397–417. doi: 10.1016/j.arabjc.2010.09.027
83. Sharma S, Yadav N, Chowdhury PK, Ganguli AK. Controlling the microstructure of reverse micelles and their templating effect on shaping nanostructures. The Journal of Physical Chemistry B 2015; 119(34): 11295–11306. doi: 10.1021/acs.jpcb.5b03063
84. Hui LS, Beswick C, Getachew A, et al. Reverse micelle templating route to ordered monodispersed spherical organo-lead halide perovskite nanoparticles for light emission. ACS Applied Nano Materials 2019; 2(7): 4121–4132. doi: 10.1021/acsanm.9b00585
85. Lim CW, Lee IS. Magnetically recyclable nanocatalyst systems for the organic reactions. Nanotoday 2010; 5(5): 412–434. doi: 10.1016/j.nantod.2010.08.008
86. Loureiro A, Azoia AG, Gomes C, Cavaco-Paulo A. Albumin-based nanodevices as drug carriers. Current Pharmaceutical Design 2016; 22(10): 1371–1390. doi: 10.2174/1381612822666160125114900
87. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nanotechnology 2009; 3(2): 279–290. doi: 10.1021/nn800596w
88. Martis E, Badve R, Degwekar M. Nanotechnology based devices and applications in medicine: An overview. Chronicles of Young Scientists 2012; 3(1): 68.
89. Masciangioli T, Zhang WX. Peer reviewed: Environmental technologies at the nanoscale. Environmental Science & Technology 2003; 37(5): 102A–108A. doi: 10.1021/es0323998
90. Dong H, Wen B, Melnik R. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Scientific Reports 2014; 4: 7037. doi: 10.1038/srep07037
91. Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology 2008; 42(12): 4447–4453. doi: 10.1021/es7029637
92. Jia Ling Tsong, Rodney Robert, Sook Mei Khor,Emerging trends in wearable glove-based sensorsA reviewAnalytica Chimica ActaVolume 1262, 29 June 2023, 341277
93. Nagarajan PK, Subramani J, Suyambazhahan S, Sathyamurthy R. Nanofluids for solar collector applications: A review. Energy Procedia 2014; 61: 2416–2434. doi: 10.1016/j.egypro.2014.12.017
94. Kosmala A, Wright R, Zhang Q, Kirby P. Synthesis of silver nanoparticles and fabrication of aqueous Ag inks for inkjet printing. Materials Chemistry and Physics 2011; 129(3): 1075–1080. doi: 10.1016/j.matchemphys.2011.05.064
95. Greeley J, Markovic NM. The road from animal electricity to green energy: Combining experiment and theory in electrocatalysis. Energy & Environmental Science 2012; 5(11): 9246–9256. doi: 10.1039/C2EE21754F
96. Liu D, Li C, Zhou F, et al. Rapid synthesis of monodisperse Au nanospheres through a laser irradiation -induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement. Scientific Reports 2015; 5: 7686.
97. Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015; 347(6225): 970–974. doi: 10.1126/science.aaa3145
DOI: https://doi.org/10.59400/nmm.v3i2.31
(138 Abstract Views, 71 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Subhasri Mohapatra, Bhishm Kumar Sahu, Deepak Kumar Dash
License URL: http://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.