Open Journal Systems

Footprints of Nanocarrier on multi drug resistance therapy

Sayali Aher, Afsar Pathan, Pankaj Jain, Shreyash Yadav, Eknath Ahire

Abstract

As it is commonly recognized, the phenomenon of multidrug resistance (MDR) is increasingly prevalent on a global scale, posing significant challenges in the realm of treatment. MDR refers to a condition where resistance to various medications, which may differ in their chemical composition and mode of action, arises due to the presence of numerous mechanisms. In response to multidrug resistance (MDR), developing technologies in the field of nanotechnology, particularly Nanocarrier, are being utilized as counteractive measures. Nanocarrier refers to biodegradable materials that are employed in the field of drug delivery. Their primary function is to improve the solubility of medications that have low solubility, boosting their bioavailability. Additionally, nanocarriers enable the timed release of drugs and facilitate the accurate targeting of specific areas inside the body. Nanocarriers exhibit a diverse range of morphologies and dimensions, encompassing nanofibers, nanocomposites, nanoparticles, and nanotubes. These nanocarriers can be administered through injection, subcutaneous delivery, or intramuscular administration. In this review article, we focus on different nanocarriers and their use in MDR.

Keywords

nanocarrier; multi drug resistance; tuberculosis; antimicrobial

Full Text:

PDF

References

1. Baguley BC. Multiple drug resistance mechanisms in cancer. Molecular Biotechnology 2010; 46(3): 308–316. doi: 10.1007/s12033-010-9321-2

2. Friberg S, Nyström AM. NANOMEDICINE: Will it offer possibilities to overcome multiple drug resistance in cancer? Journal of Nanobiotechnology 2016; 14(1). doi: 10.1186/s12951-016-0172-2

3. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America 1993; 90(17): 7915–22.

4. Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Letters 2006; 580(12): 2903–2909. doi: 10.1016/j.febslet.2006.02.020

5. Mitscher LA, Pillai SP, Gentry EJ, et al. ChemInform abstract: Multiple drug resistance. ChemInform 2000; 31(3). doi: 10.1002/chin.200003284

6. Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Letters 2014; 347(2): 159–166. doi: 10.1016/j.canlet.2014.03.013

7. Chamundeeswari M, Jeslin J, Versma ML. Nanocarriers for drug delivery applications. Environmental Chemistry Letters 2018; 17(2): 849–865. doi: 10.1007/s10311-018-00841-1

8. Rawat M, Singh D, Saraf S. Nanocarriers: Promising vehicle for bioactive drugs. Biological and Pharmaceutical Bulletin 2006; 29(9): 1790—1798. doi: 10.1248/bpb.29.1790

9. Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics 2009; 71(3): 431–444. doi: 10.1016/j.ejpb.2008.09.026

10. Sawant RR, Torchilin VP. Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 2010; 6(17): 4026. doi: 10.1039/b923535n

11. Chamundeeswari M, Sastry TP, Lakhsmi BS, et al. Iron nanoparticles from animal blood for cellular imaging and targeted delivery for cancer treatment. Biochimica et Biophysica Acta (BBA)–General Subjects 2013; 1830(4): 3005–3010. doi: 10.1016/j.bbage n.2012.12.031

12. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews 2011; 63(3): 170–183. doi: 10.1016/j.addr.2010.10.008

13. M. Rabanel J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Current Medicinal Chemistry 2012; 19(19): 3070–3102. doi: 10.2174/092986712800784702

14. Das M, Nariya P, Joshi A, et al. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydrate Polymers 2020; 247: 116751. doi: 10.1016/j.carbpol.2020.116751

15. Dua K, Rapalli VK, Shukla SD, et al. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomedicine & Pharmacotherapy 2018; 107: 1218–1229. doi: 10.1016/j.biopha.2018.08.101

16. Gigliobianco M, Casadidio C, Censi R, et al. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics 2018; 10(3): 134. doi: 10.3390/pharmaceutics10030134

17. Mohammad IS, He W, Yin L. A smart paclitaxel-disulfiram nanococrystals for efficient MDR reversal and enhanced apoptosis. Pharmaceutical Research 2018; 35(4). doi: 10.1007/s11095-018-2370-0

18. Ahire E, Thakkar S, Darshanwad M, et al. Parenteral nanosuspensions: A brief review from solubility enhancement to more novel and specific applications. Acta Pharmaceutica Sinica B 2018; 8(5): 733–755. doi: 10.1016/j.apsb.2018.07.011

19. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters 2011; 6(1). doi: 10.1186/1556-276x-6-555

20. Elkady MF, Shokry Hassan H, Hafez EE, et al. Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorganic Chemistry and Applications 2015; 2015: 1–20. doi: 10.1155/2015/536854

21. Jiang S, Chekini M, Qu ZB, et al. Chiral ceramic nanoparticles and peptide catalysis. Journal of the American Chemical Society 2017; 139(39): 13701–13712. doi: 10.1021/jacs.7b01445

22. Yuan Y, Cai T, Xia X, et al. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Delivery 2016; 23(9): 3350–3357. doi: 10.1080/10717544.2016.1178825

23. M. Rabanel J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers. Current Medicinal Chemistry 2012; 19(19): 3070–3102. doi: 10.2174/092986712800784702

24. Miretti M, Juri L, Cosiansi MC, et al. Antimicrobial effects of ZnPc delivered into liposomes on multidrug resistant (MDR)-mycobacterium tuberculosis. ChemistrySelect 2019; 4(33): 9726–9730. doi: 10.1002/slct.201902039

25. Kang KW, Chun MK, Kim O, et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine 2010; 6(2): 210–213. doi: 10.1016/j.nano.2009.12.006

26. Tran TH, Ramasamy T, Truong DH, et al. Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells. Pharmaceutical Research 2014; 31(8): 1978–1988. doi: 10.1007/s11095-014-1300-z

27. Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. Journal of Controlled Release 2016; 225: 75–86. doi: 10.1016/j.jconrel.2016.01.034

28. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics 2010; 385(1–2): 113–142. doi: 10.1016/j.ijpharm.2009.10.018

29. Yadav S, van Vlerken LE, Little SR, et al. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemotherapy and Pharmacology 2008; 63(4): 711–722. doi: 10.1007/s00280-008-0790-y

30. Sarmento B, Ribeiro A, Veiga F, et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharmaceutical Research 2007; 24(12): 2198–2206. doi: 10.1007/s11095-007-9367-4

31. Qin M, Lee YK, Ray A, et al. Overcoming cancer multidrug resistance by codelivery of doxorubicin and verapamil with hydrogel nanoparticles. Macromolecular Bioscience 2014; 14(8): 1106–1115. doi: 10.1002/mabi.201400035

32. Dhanikula RS, Argaw A, Bouchard JF, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Molecular Pharmaceutics 2008; 5(1): 105–116. doi: 10.1021/mp700086j

33. Dhanikula RS, Hildgen P. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials 2007; 28(20): 3140–3152. doi: 10.1016/j.biomaterials.2007.03.012

34. Dhanikula RS, Hammady T, Hildgen P. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood—Brain barrier model. Journal of Pharmaceutical Sciences 2009; 98(10): 3748–3760. doi: 10.1002/jps.21669

35. Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discovery Today 2010; 15(5–6): 171–185. doi: 10.1016/j.drudis.2010.01.009

36. Turnbull WB, Stoddart JF. Design and synthesis of glycodendrimers. Reviews in Molecular Biotechnology 2002; 90(3–4): 231–255. doi: 10.1016/s1389-0352(01)00062-9

37. Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. European Journal of Pharmaceutics and Biopharmaceutics 2019; 136: 18–28. doi: 10.1016/j.ejpb.2019.01.006

38. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews 1996; 21(2): 107–116. doi: 10.1016/S0169-409X(96)00401-2

39. Jones MC, Gao H, Leroux JC. Reverse polymeric micelles for pharmaceutical applications. Journal of Controlled Release 2008; 132(3): 208–215. doi: 10.1016/j.jconrel.2008.05.006

40. Kim SC, Kim DW, Shim TH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. Journal of Controlled Release 2001; 72(1–3): 191–202. doi: 10.1016/S0168-3659(01)00275-9

41. Kim D, Lee ES, Oh KT, et al. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 2008; 4(11): 2043–2050. doi: 10.1002/smll.200701275

42. Chen HH, Lu IL, Liu TI, et al. Indocyanine green/doxorubicin-encapsulated functionalized nanoparticles for effective combination therapy against human MDR breast cancer. Colloids and Surfaces B: Biointerfaces 2019; 177: 294–305. doi: 10.1016/j.colsurfb.2019.02.001


DOI: https://doi.org/10.59400/nmm.v3i2.274
(60 Abstract Views, 41 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sayali Aher, Afsar Pathan, Pankaj Jain, Shreyash Yadav, Eknath Ahire

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.