Open Journal Systems

Carbon nanomaterials for biomedical applications: A comprehensive review

Razu Shahazi, Srabani Majumdar, Amirul Islam Saddam, Joyanta Mondal, Mohammed Muzibur Rahman, Md. Mahmud Alam

Abstract

 Carbon-based nanomaterials have emerged as promising candidates for a wide range of biomedical applications due to their unique physicochemical properties and biocompatibility. This comprehensive review aims to provide an overview of the recent advancements and potential applications of carbon-based nanomaterials in the field of biomedicine. The review begins by discussing the different types of carbon-based nanomaterials, including carbon nanotubes, graphene, and fullerenes, highlighting their distinct structures and properties. It then explores the synthesis and functionalization strategies employed to tailor their physicochemical properties, facilitating their integration into various biomedical platforms. Furthermore, the review delves into the applications of carbon-based nanomaterials in biomedicine, focusing on three major areas: diagnostics, therapeutics, and tissue engineering. In diagnostics, carbon-based nanomaterials have demonstrated their utility as biosensors, imaging agents, and platforms for disease detection and monitoring. In therapeutics, they have been utilized for drug delivery, gene therapy, and photothermal therapy, among others. Additionally, carbon-based nanomaterials have shown great potential in tissue engineering, where they have been employed as scaffolds, biosensors, and substrates for cell growth and differentiation. The review also highlights the challenges and considerations associated with the use of carbon-based nanomaterials in biomedical applications, including toxicity concerns, biocompatibility, and regulatory considerations. Moreover, it discusses the current trends and future prospects in this rapidly evolving field, such as the development of multifunctional nanomaterials, combination therapies, and personalized medicine.


Keywords

carbon-based nanomaterials; biosensors; diagnostics; therapeutics; tissue engineering

Full Text:

PDF

References

1. Riley PR, Narayan RJ. Recent advances in carbon nanomaterials for biomedical applications: A review. Current Opinion in Biomedical Engineering. 2021; 17: 100262. doi: 10.1016/j.cobme.2021.100262

2. Zhang L, Xia J, Zhao Q, et al. Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small. 2010; 6(4): 537-544. doi: 10.1002/smll.200901680

3. Saleemi MA, Kong YL, Yong PVC, et al. An overview of recent development in therapeutic drug carrier system using carbon nanotubes. Journal of Drug Delivery Science and Technology. 2020; 59: 101855. doi: 10.1016/j.jddst.2020.101855

4. Liu Z, Chen K, Davis C, et al. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Research. 2008; 68(16): 6652-6660. doi: 10.1158/0008-5472.can-08-1468

5. Chen Z, Zhang Z, Liu B. Biocompatible, uniform, and re-dispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Advanced Functional Materials. 2013; 23(24): 2959-2967.

6. Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Research Letters. 2014; 9(1). doi: 10.1186/1556-276x-9-393

7. Yang K, Hu L, Ma X, et al. Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Advanced Materials. 2012; 24(14): 1868-1872. doi: 10.1002/adma.201104964

8. Shi X, Gong H, Li Y, et al. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials. 2013; 34(20): 4786-4793. doi: 10.1016/j.biomaterials.2013.03.023

9. Liu Z, Tabakman SM, Chen Z, et al. Preparation of carbon nanotube bioconjugates for biomedical applications. Nature Protocols. 2009; 4(9): 1372-1381. doi: 10.1038/nprot.2009.146

10. Lee C, Wei X, Kysar JW, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008; 321(5887): 385-388. doi: 10.1126/science.1157996

11. Lee C, Wei X, Li Q, et al. Elastic and frictional properties of graphene. physica status solidi (b). 2009; 246(11-12): 2562-2567. doi: 10.1002/pssb.200982329

12. Wang X, Zhi L, Müllen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters. 2007; 8(1): 323-327. doi: 10.1021/nl072838r

13. Yang K, Feng L, Shi X, et al. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013; 42(2): 530-547. doi: 10.1039/c2cs35342c

14. Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849

15. Wu J, Pisula W, Müllen K. Graphenes as Potential Material for Electronics. Chemical Reviews. 2007; 107(3): 718-747. doi: 10.1021/cr068010r

16. Li D, Müller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology. 2008; 3(2): 101-105. doi: 10.1038/nnano.2007.451

17. Yang K, Zhang S, Zhang G, et al. Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Letters. 2010; 10(9): 3318-3323. doi: 10.1021/nl100996u

18. Li N, Zhang Q, Gao S, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Scientific Reports. 2013; 3(1). doi: 10.1038/srep01604

19. Li JL, Bao HC, Hou XL, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie International Edition England. 2013; 52(14): 4310-4314.

20. Delogu LG, Stanford SM, Santelli E, et al. Carbon Nanotube-Based Nanocarriers: The Importance of Keeping It Clean. Journal of Nanoscience and Nanotechnology. 2010; 10(8): 5293-5301. doi: 10.1166/jnn.2010.3083

21. Maiti D, Tong X, Mou X, et al. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Frontiers in Pharmacology. 2019; 9. doi: 10.3389/fphar.2018.01401

22. Tîlmaciu CM, Morris MC. Carbon nanotube biosensors. Frontiers in Chemistry. 2015; 3. doi: 10.3389/fchem.2015.00059

23. Tufano I, Vecchione R, Netti PA. Methods to Scale Down Graphene Oxide Size and Size Implication in Anti-cancer Applications. Frontiers in Bioengineering and Biotechnology. 2020; 8. doi: 10.3389/fbioe.2020.613280

24. Tian B, Wang C, Zhang S, et al. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano. 2011; 5(9): 7000-7009. doi: 10.1021/nn201560b

25. Kumar S, Nehra M, Kedia D, et al. Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science. 2018; 64: 219-253. doi: 10.1016/j.pecs.2017.10.005

26. Peng LM, Zhang Z, Wang S. Carbon nanotube electronics: recent advances. Materials Today. 2014; 17(9): 433-442. doi: 10.1016/j.mattod.2014.07.008

27. Dai L, Huang Z, Huang Q, et al. Carbon nanotube mode-locked fiber lasers: recent progress and perspectives. Nanophotonics. 2020; 10(2): 749-775. doi: 10.1515/nanoph-2020-0446

28. Popov V. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports. 2004; 43(3): 61-102. doi: 10.1016/j.mser.2003.10.001

29. Wen L, Li F, Cheng H. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials. 2016; 28(22): 4306-4337. doi: 10.1002/adma.201504225

30. Rahman G, Najaf Z, Mehmood A, et al. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C. 2019; 5(1): 3. doi: 10.3390/c5010003

31. Shen H, Zhang L, Liu M, et al. Biomedical Applications of Graphene. Theranostics. 2012; 2(3): 283-294. doi: 10.7150/thno.3642

32. Kumbhakar P, Chowde Gowda C, Tiwary CS. Advance Optical Properties and Emerging Applications of 2D Materials. Frontiers in Materials. 2021; 8. doi: 10.3389/fmats.2021.721514

33. Huang X, Yin Z, Wu S, et al. Graphene‐Based Materials: Synthesis, Characterization, Properties, and Applications. Small. 2011; 7(14): 1876-1902. doi: 10.1002/smll.201002009

34. Wu W, Yu Q, Peng P, et al. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology. 2012; 23: 035603. doi: 10.1088/0957-4484/23/3/035603

35. Pu J, Tang L, Li C, et al. Chemical vapor deposition growth of few-layer graphene for transparent conductive films. RSC Advances. 2015; 5(55): 44142-44148. doi: 10.1039/c5ra03919c

36. Troshin PA, Hoppe H, Peregudov AS, et al. Fullerene‐Based Materials for Organic Solar Cells. ChemSusChem. 2010; 4(1): 119-124. doi: 10.1002/cssc.201000246

37. Popov AA, Yang S, Dunsch L. Endohedral Fullerenes. Chemical Reviews. 2013; 113(8): 5989-6113. doi: 10.1021/cr300297r

38. Mintz KJ, Bartoli M, Rovere M, et al. A deep investigation into the structure of carbon dots. Carbon. 2021; 173: 433-447. doi: 10.1016/j.carbon.2020.11.017

39. He Z, Liu S, Zhang C, et al. Coal based carbon dots: Recent advances in synthesis, properties, and applications. Nano Select. 2021; 2(9): 1589-1604. doi: 10.1002/nano.202100019

40. Yuan T, Meng T, He P, et al. Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C. 2019; 7(23): 6820-6835. doi: 10.1039/c9tc01730e

41. Wang B, Cai H, Waterhouse GIN, et al. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science. 2022; 2(6). doi: 10.1002/smsc.202200012

42. Feng L, Xie N, Zhong J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials. 2014; 7(5): 3919-3945. doi: 10.3390/ma7053919

43. Abdo GG, Zagho MM, Al Moustafa A, et al. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2021; 109(11): 1893-1908. doi: 10.1002/jbm.b.34828

44. Ruiz-Cornejo JC, Sebastián D, Lázaro MJ. Synthesis and applications of carbon nanofibers: a review. Reviews in Chemical Engineering. 2020; 36(4): 493-511. doi: 10.1515/revce-2018-0021

45. Karousis N, Suarez-Martinez I, Ewels CP, et al. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chemical Reviews. 2016; 116(8): 4850-4883. doi: 10.1021/acs.chemrev.5b00611

46. Gurova OA, Omelyanchuk LV, Dubatolova TD, et al. Synthesis and modification of carbon nanohorns structure for hyperthermic application. Journal of Structural Chemistry. 2017; 58(6): 1205-1212. doi: 10.1134/s0022476617060191

47. Serban BC, Bumbac M, Buiu O, et al. Carbon nanohorns and their nanocomposites: synthesis, properties and applications. A concise review. Annals of the Academy of Romanian Scientists Series on Science and Technology of Information. 2018; 11(2): 2066-8562.

48. Hernández-Rivera M, Zaibaq NG, Wilson LJ. Toward carbon nanotube-based imaging agents for the clinic. Biomaterials. 2016; 101: 229-240. doi: 10.1016/j.biomaterials.2016.05.045

49. Kuźnik N, Tomczyk MM. Multiwalled carbon nanotube hybrids as MRI contrast agents. Beilstein Journal of Nanotechnology. 2016; 7: 1086-1103. doi: 10.3762/bjnano.7.102

50. Li JL, Tang B, Yuan B, et al. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials. 2013; 34(37): 9519-9534. doi: 10.1016/j.biomaterials.2013.08.066

51. Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research. 2008; 1(3): 203-212. doi: 10.1007/s12274-008-8021-8

52. Tran TT, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends in Analytical Chemistry. 2016; 79: 222-232. doi: 10.1016/j.trac.2015.12.002

53. Liu S, Guo X. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Materials 2012; 4:23. doi: 10.1038/am.2012.42

54. Alabsi SS, Ahmed AY, Dennis JO, et al. A Review of Carbon Nanotubes Field Effect-Based Biosensors. IEEE Access. 2020; 8: 69509-69521. doi: 10.1109/access.2020.2987204

55. Ghada GA, Moustafa M, Zagho, et al. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. Journal of Biomedical Materials Research. 2021; 1-16.

56. Ghosal K, Sarkar K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomaterials Science & Engineering. 2018; 4: 2653−2703. doi: 10.1021/acsbiomaterials.8b00376

57. Raphey VR, Henna TK, Nivitha KP, et al. Advanced biomedical applications of carbon nanotube. Materials Science and Engineering C. 2019; 100: 616-630. doi: 10.1016/j.msec.2019.03.043

58. Molaei MJ. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances. 2019; 9: 6460-6481. doi: 10.1039/C8RA08088G

59. Zhu S, Xu G. Carbon Nanohorns and Their Biomedical Applications. Nanomaterials for the Life Sciences. 2012; 9: 83-109. doi: 10.1002/9783527610419.ntls0231

60. Fritea L, Banica F, Costea TO, et al. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. Materials. 2021; 14: 6319. doi: 10.3390/ma14216319

61. Heydari-Bafrooei E, Ensafi AA. Typically used carbon-based nanomaterials in the fabrication of biosensors, Electrochemical Biosensors. Elsevier. 2019; 77-98. doi: 10.1016/B978-0-12-816491-4.00004-8

62. Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano. 2016; 10(1): 46-80. doi: 10.1021/acsnano.5b05690

63. Modi CD, Patel SJ, Desai AB, Murthy RSR. Functionalization and evaluation of PEGylated Carbon Nanotubes as novel Drug delivery for methotrexate. Journal of Applied Pharmaceutical Science. 2011; 1(5): 103-108.

64. Sharma S, Mehra NK, Jain K, Jain NK. Effect of functionalization on drug delivery potential of carbon nanotubes. Artificial Cells, Nanomedicine, and Biotechnology. 2016; 44(8): 1851-1860. doi: 10.3109/21691401.2015.1111227

65. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters. 2011; 6: 555. doi: 10.1186/1556-276X-6-555

66. Tan JM, Arulselvan P, Fakurazi S, et al. A Review on Characterization sand Biocompatibility of Functionalized Carbon Nanotubes in Drug Delivery Design. Journal of Nanomaterials. 2014; 917024. doi: 10.1155/2014/917024

67. Ge X, Asiri AM, Du D, et al. Nanomaterial-enhanced paper-based biosensors. TrAC Trends in Analytical Chemistry. 2014; 58: 31-39. doi: 10.1016/j.trac.2014.03.008

68. Bhardwaj J, Devarakonda S, Kumar S, Jang J. Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors and Actuators B: Chemical. 2017; 253: 115-123. doi: 10.1016/j.snb.2017.06.108

69. Veeralingam S, Badhulika S. Enzyme immobilized multi-walled carbon nanotubes on paper-based biosensor fabricated via mask-less hydrophilic and hydrophobic microchannels for cholesterol detection. Journal of Industrial and Engineering Chemistry. 2022; 113: 401-410. doi: 10.1016/j.jiec.2022.06.015

70. Ku SH, Lee M, Park CB. Carbon-Based Nanomaterials for Tissue Engineering. Advanced Healthcare Materials. 2013; 2: 244-260. doi: 10.1002/adhm.201200307

71. Bai RG, Ninan N, Muthoosamy K, Manickam S. Graphene: A versatile platform for nanotheranostics and tissue engineering. Progress in Materials Science. 2018; 91: 24-69. doi: 10.1016/j.pmatsci.2017.08.004

72. Ławkowska K, Pokrywcznska M, Koper K, et al. Application of Graphene in Tissue Engineering of the Nervous System. International Journal of Molecular Sciences. 2022; 23: 33. doi: 10.3390/ijms23010033

73. Oprea M, Voicu SI. Cellulose Composites with Graphene for Tissue Engineering Applications. Materials. 2020; 13: 5347. doi: 10.3390/ma13235347

74. Huang B. Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanufacturing Reviews. 2020; 5: 3. doi: 10.1007/s40898-020-00009-x

75. Bao L, Cui X, Mortimer M, et al. The renaissance of one-dimensional carbon nanotubes in tissue engineering. Nano Today. 2023; 49: 101784. doi: 10.1016/j.nantod.2023.101784

76. Patel DK, Dutta SD, Ganguly K, et al. Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering. Journal of Biomedical Materials Research Part A. 2021; 109(10): 1869-1880. doi: 10.1002/jbm.a.37179

77. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science. 2010; 123(24): 4195-4200. doi: 10.1242/jcs.023820

78. Soroush E, Mohammadpour Z, Kharaziha M, et al. Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydrate Polymers. 2022; 291: 119670. doi: 10.1016/j.carbpol.2022.119670

79. Serafin A, Murphy C, Rubio MC, Collins MN. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Materials Science and Engineering: C. 2021; 122: 111927. doi: 10.1016/j.msec.2021.111927

80. Rastegar S, Mehdikhani M, Bigham A, et al. Poly glycerol sebacate/ polycaprolactone/ carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering. Materials Chemistry and Physics. 2021; 266: 124543. doi: 10.1016/j.matchemphys.2021.124543

81. Yan C, Ren Y, Sun X, et al. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. Journal of Photochemistry and Photobiology B: Biology. 2020; 202: 111680. doi: 10.1016/j.jphotobiol.2019.111680

82. Madannejad R, Shoaie N, Jahanpeyma F, et al. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chemico-Biological Interactions. 2019; 307: 206-222. doi: 10.1016/j.cbi.2019.04.036

83. Rajakumar G, Zhang XH, Gomathi T, et al. Current Use of Carbon-Based Materials for Biomedical Applications-A Prospective and Review. Processes. 2020; 8: 355. doi: 10.3390/pr8030355

84. Yuan X, Zhang X, Sun L, et al. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Particle and Fibre Toxicology. 2019; 18: 1743-8977. doi: 10.1186/s12989-019-0299-z

85. Díez-Pascual AM. Carbon-Based Nanomaterials. International Journal of Molecular Sciences. 2021; 22: 7726. doi: 10.3390/ijms22147726

86. Monaco AM, Giugliano M. Carbon-based smart nanomaterials in biomedicine and neuro-engineering. Beilstein Journal of Nanotechnology. 2014; 5: 1849-1863. doi: 10.3762/bjnano.5.196


DOI: https://doi.org/10.59400/n-c.v1i1.448
(175 Abstract Views, 16 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Razu Shahazi, Srabani Majumdar, Amirul Islam Saddam, Joyanta Mondal, Mohammed Muzibur Rahman, Md. Mahmud Alam

License URL: http://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License.
.