Open Journal Systems

Reaction-diffusion effects and spatiotemporal oscillations under SEM, STM and AFM-assisted charging in fiber-like and wire-like systems: From molecular and quantum wires to cooperative ferroelectric nanofibers and microfibers

Eugene D. Adamovich, Eugenia L. Buryanskaya, Margaret A. Gradova, Oleg V. Gradov

Abstract

This review addresses the problem of reaction-diffusion effects and spatiotemporal oscillations in fiber-like and wire-like systems under the electron beam in SEM and in the presence of electric field in some special AFM techniques, such as current sensing atomic force microscopy (CS-AFM)/conductive atomic force microscopy (C-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) also known as surface potential microscopy. Some similar reaction-diffusion effects also can be observed in scanning capacitance microscopy (SCM), scanning gate microscopy (SGM), scanning voltage microscopy (SVM) and piezoresponse force microscopy (PFM). At the end of this paper the authors provide analysis of their own results and approaches. In particular, the possibility of achieving the ion transfer controlled growth of cells along the ion concentration gradients in reaction-diffusion fibers and actuators is indicated. This fundamental idea is discussed within the framework of the implantable fiber “bioiontronics” and “neuroiontronics” controlled by acoustic and electrical signals that regulate the reaction-diffusion or chemical oscillation activity of such fiber structures as reaction-diffusion actuators and sensors. The literature review includes more than 130 references.


Keywords

dielectric charging; reaction-diffusion; iontronics; nanofibers and microfibers

Full Text:

PDF

References

1. Nejoh H. Incremental charging of a molecule at room temperature using the scanning tunnelling microscope. Nature 1991; 353(6345): 640–642. doi: 10.1038/353640a0

2. Sablikov VA, Polyakov SV, Shchamkhalova BS. Coulomb interaction and charging effects in conductance of mesoscopic quantum wire structures. In: Proceedings of the Physics and Technology International Symposium [6th]; 22–26 June 1998; Petersburg, Russia. pp. 86–90.

3. Sablikov VA, Polyakov SV, Büttiker M. Charging effects in a quantum wire with leads. Physical Review B 2000; 61: 13763–13773. doi: 10.1103/PhysRevB.61.13763

4. Zozulenko I. Charging effects and bistability in resonant quantum wire structures. Journal of Physics: Condensed Matter 1994; 6(28): 5507. doi: 10.1088/0953-8984/6/28/023

5. Kouklin N, Menon L, Bandyopadhyay S. Room-temperature single-electron charging in electrochemically synthesized semiconductor quantum dot and wire array. Applied Physics Letters 2002; 80: 1649–1651. doi: 10.1063/1.1458683

6. Richter A, Yamaguchi M, Akazaki T, et al. Single-electron charging effects in a semiconductor quantum wire with side-coupled quantum dot. Japanese Journal of Applied Physics 2004; 43: 7144. doi: 10.1143/JJAP.43.7144

7. Available online: https://flux.aps.org/meetings/YR03/MAR03/baps/abs/S5470.html#SP27.010 (accessed on 14 September 2023).

8. Emberly EG, Kirczenow G. Multiterminal molecular wire systems: A self-consistent theory and computer simulations of charging and transport. Physical Review B 2000; 62(15): 10451. doi: 10.1103/PhysRevB.62.10451

9. Keyes DE, McInnes LC, Woodward C, et al. Multiphysics simulations: Challenges and opportunities. The International Journal of High Performance Computing Applications 2013; 27(1): 4–83. doi: 10.1177/109434201246818

10. Michopoulos JG, Farhat C, Fish J. Modeling and simulation of multiphysics systems. Journal of Computing and Information Science in Engineering 2005; 5(3): 198–213. doi: 10.1115/1.2031269

11. Emberly EG, Kirczenow G. Charging effects, forces, and conduction in molecular wire systems. Annals of the New York Academy of Sciences 2002; 960(1): 131–142. doi: 10.1111/j.1749-6632.2002.tb03028.x

12. Matsukawa T, Kanemaru S, Masahara M, et al. Silicon nanowire memory using surface charging and its operation analysis by scanning Maxwell-stress microcopy (SMM). In: Proceedings of the 2001 International Semiconductor Device Research Symposium. Symposium Proceedings (Cat. No. 01EX497); 5–7 December 2001; Washington, DC, USA. pp. 364–367.

13. Zhang LQ, Liu XH, Liu Y, et al. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. ACS Nano 2011; 5(6): 4800–4809. doi: 10.1021/nn200770p

14. Chen MC, Chen HC, Lee TH, et al. Estimating the detection stability of a Si nanowire sensor using an additional charging electrode. In: Proceedings of the 2013 IEEE International Reliability Physics Symposium (IRPS); 14–18 April 2013; Monterey, CA, USA. pp. ME.1.1–ME.1.4.

15. van Kouwen MP, Reimer ME, Hidma AW, et al. Single electron charging in optically active nanowire quantum dots. Nano Letters 2010; 10(5): 1817–1822. doi: 10.1021/nl100520r

16. Liu XH, Zhong L, Zhang LQ, et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters 2011; 98(18): 183107. doi: 10.1063/1.3585655

17. Zankowski SP, Vanpaemel J, Vereecken PM. Interconnected Ni Nanowire scaffolds for fast-charging 3D thin-film Lithium-Ion batteries. In: Proceedings of the Electrochemical Society Meeting Abstracts MA2016-02; 2–7 October 2016; Honolulu, HI, USA. pp. 459–459.

18. Yin Z, Cho S, You DJ, et al. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery. Nano Research 2018; 11: 769–779. doi: 10.1007/s12274-017-1686-0

19. Gao F, Nebel CE. Diamond nanowire forest decorated with nickel hydroxide as a pseudocapacitive material for fast charging-discharging. Physica Status Solidi (a) 2015; 212(11): 2533–2538. doi: 10.1002/pssa.201532131

20. Mirvakili SM, Hunter IW. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors. Advanced Materials 2017; 29(27): 1700671. doi: 10.1002/adma.201700671

21. Liu R, Wang J, Sun T, et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%. Nano Letters 2017; 17(7): 4240–4247. doi: 10.1021/acs.nanolett.7b01154

22. Liu H, Li M, Kaner RB, et al. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Applied Materials & Interfaces 2018; 10(18): 15609–15615. doi: 10.1021/acsami.8b00014

23. Quiroga-González E, Carstensen J, Föll H. Structural and electrochemical investigation during the first charging cycles of silicon microwire array anodes for high capacity lithium ion batteries. Materials 2013; 6(2): 626–636. doi: 10.3390/ma6020626

24. Quiroga-González E, Carstensen J, Föll H. Optimal conditions for fast charging and long cycling stability of silicon microwire anodes for lithium ion batteries, and comparison with the performance of other Si anode concepts. Energies 2013; 6(10): 5145–5156. doi: 10.3390/en6105145

25. Cheng ZH, Koyama H, Kimura Y, et al. Modeling of local dielectric charging induced by line scan during SEM observation. Journal of Vacuum Science & Technology B 2015; 33(6): 06FL02. doi: 10.1116/1.4936069

26. Arat KT, Klimpel T, Hagen CW. Model improvements to simulate charging in scanning electron microscope. Journal of Micro/Nanolithography, MEMS, and MOEMS 2019; 18(4): 044003. doi: 10.1117/1.JMM.18.4.044003

27. Villarrubia JS. Modeling scanning electron microscope measurements with charging. In: Proceedings of the Frontiers of Characterization and Metrology for Nanoelectronics; 25–28 March 2013; Gaithersburg, MD.

28. Curtis GH, Ferrier RP. The electric charging of electron-microscope specimens. Journal of Physics D: Applied Physics 1969; 2(7): 1035. doi: 10.1088/0022-3727/2/7/312

29. Shaffner TJ, Van Veld RD. ‘Charging’ effects in the scanning electron microscope. Journal of Physics E: Scientific Instruments 1971; 4: 633. doi: 10.1088/0022-3735/4/9/002

30. Pawley JB. Charging artifacts in the scanning electron microscope (Japenese). Scanning Electron Microscopy 1972; Part Ⅰ: 153–160.

31. Robinson VNE. The elimination of charging artefacts in the scanning electron microscope. Journal of Physics E: Scientific Instruments 1975; 8: 638. doi: 10.1088/0022-3735/8/8/009

32. Okai N, Sohda Y. Study on image drift induced by charging during observation by scanning electron microscope. Japanese Journal of Applied Physics 2012; 51: 06FB11. doi: 10.1143/JJAP.51.06FB11

33. Miller DJ. Artifacts of specimen charging in X-ray microanalysis in the scanning electron microscope. Ultramicroscopy 1991; 35(3–4): 357–366. doi: 10.1016/0304-3991(91)90088-N

34. Le Berre JF, Gauvin R, Demopoulos GP. Charging: A limitation to perform X-ray microanalysis in the variable pressure scanning electron microscope. Microscopy and Microanalysis 2005; 11(S02): 410–411. doi: 10.1017/S1431927605502757

35. Lee KW. Reduction of Charging Effects Using Pseudo-Random Scanning in the Scanning Electron Microscope [PhD thesis]. National University of Singapore; 2000.

36. Thong JTL, Lee KW, Wong WK. Reduction of charging effects using vector scanning in the scanning electron microscope. Scanning 2001; 23(6): 395–402. doi: 10.1002/sca.4950230606

37. Wan Ismail WZ, Sim KS, Tso CP, Ting HY. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS). Scanning 2011; 33(4): 233–251. doi: 10.1002/sca.20237

38. Wong WK, Thong JTL, Phang JCH. Charging identification and compensation in the scanning electron microscope. In: Proceedings of the 1997 6th International Symposium on the Physical and Failure Analysis of Integrated Circuits; 25 July 1997; Singapore. pp. 97–102.

39. Saparin GV, Spivak GV. Observation of the process of surface charging of dielectrics by means of a scanning electron microscope (Russian). Bulletin of the Russian Academy of Sciences: Physics 1966; 30: 816–818.

40. Hieber H, Erdmann-Jesnitzer F. Electron-microscope and magnetic examination of the formation of cleavage cracks in low-C Fe after electrolytic charging with H (German). Arch Eisnhuttenwesen 1971; 42(5): 359–364.

41. Kokhanchik LS. Use of the effects of specimen charging in diagnosing dielectric inhomogeneities in lithium niobate films in a scanning electron microscope. Industrial Laboratory 1995; 61(6): 339–341.

42. Rondot S, Jbara O, Fakhfakh S, et al. Effect of surface mechanical finishes on charging ability of electron irradiated PMMA in a scanning electron microscope. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2011; 269(19): 2117–2123. doi: 10.1016/j.nimb.2011.07.001

43. Bradley GF. Electron Beam Charging of Polymers in A Scanning Electron Microscope [PhD thesis]. University of Tennessee, Knoxville; 1992.

44. Blaise G, Braga D. Investigation of insulator charging properties with a scanning electron microscope: Dose and current density effects. Physical Chemistry News 2003; 10: 1–4.

45. Rau EI, Tatarintsev AA, Kupreenko SY, et al. Comparative analysis of methods for measurement of the surface potential of dielectrics charging under electron-beam irradiation in a scanning electron microscope. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 2017; 11: 1062–1068. doi: 10.1134/S1027451017050354

46. Campbell ER, Reisner JH, Chung KT. Charging phenomenon in conductor-insulator composites as displayed by the scanning electron microscope. Journal of Applied Physics 1983; 54(2): 1133–1134. doi: 10.1063/1.332132

47. Barkay Z, Dwir B, Deutscher G, Grünbaum E. Electrical charging of percolating samples in the scanning electron microscope. Applied Physics Letters 1989; 55(26): 2787–2789. doi: 10.1063/1.101909

48. Le Bihan R, Boudjema EH. Study of the charging of TGS crystals during direct observation in a scanning electron microscope. Ferroelectrics 1988; 81(1): 119–122. doi: 10.1080/00150198808008825

49. Dremova NN, Erko AI, Roshchupkin DV. Charging mechanism for the formation of a metastable surface-acoustic-wave potential contrast observed in a scanning electron microscope. Technical Physics 1988; 33: 1066–1068.

50. Tan YY, Sim KS, Tso CP. A study on central moments of the histograms from scanning electron microscope charging images. Scanning 2007; 29(5): 211–218. doi: 10.1002/sca.20065

51. Koike T, Ikeda T, Miyoshi M, et al. Accuracy of overlay metrology with nonp-enetrating and negative-charging electron beam of the scanning electron microscope. Japanese Journal of Applied Physics 2002; 41: 915. doi: 10.1143/JJAP.41.915

52. Miyoshi M, Ura K. Negative charging-up contrast formation of multilayered structures with a nonpenetrating electron beam in scanning-electron microscope. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2005; 23(6): 2763–2768. doi: 10.1116/1.2101757

53. Singh HP, Sekhon SS. Conductivity behaviour of proton conducting polymer gel electrolytes with PVdF-HFP. European Polymer Journal 2003; 39(1): 93–98. doi: 10.1016/S0014-3057(02)00172-6

54. Yang Y, Shi Z, Holdcroft S. Synthesis of sulfonated polysulfone-b lock-PVDF copolymers: enhancement of proton conductivity in low ion exchange capacity membranes. Macromolecules 2004; 37(5): 1678–1681. doi: 10.1021/ma035659e

55. Ju YW, Lee YH, Kim C, et al. Preparation and proton conductivity of sulfonated-(PVDF-hfp/SEBS) composite membrane. Applied Chemistry 2004; 8: 510–513.

56. Shen J, Qiu X, Li Y, et al. Effect of alkaline treatment of PVDF membranes on preparation of proton exchange membranes with high conductivity. Acta Chimica Sinica 2005; 63(13): 1187–1192.

57. Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A. Investigation of proton conductivity of anhydrous proton exchange membranes prepared via grafting vinyltriazole onto alkaline-treated PVDF. Journal of Polymer Science Part A: Polymer Chemistry 2014; 52(13): 1885–1897. doi: 10.1002/pola.27197

58. Sinirlioglu D, Muftuoglu AE. Investigation of proton conductivity of PVDF based anhydrous proton exchange membranes (PEMs) obtained via a facile “Grafting Through” strategy. Journal of Polymer Research 2015; 22: 232. doi: 10.1007/s10965-015-0868-2

59. Sadeghi S, Şanlı LI, Güler E, Gürsel SA. Enhancing proton conductivity via sub-micron structures in proton conducting membranes originating from sulfonated PVDF powder by radiation-induced grafting. Solid State Ionics 2018; 314: 66–73. doi: 10.1016/j.ssi.2017.11.017

60. Ahmadian-Alam L, Mahdavi H. Preparation and characterization of PVDF-based blend membranes as polymer electrolyte membranes in fuel cells: Study of factor affecting the proton conductivity behavior. Polymers for Advanced Technologies 2018; 29(8): 2287–2299. doi: 10.1002/pat.4340

61. Sun L, Gu Q, Wang H, et al. Anhydrous proton conductivity of electrospun phosphoric acid-doped PVP-PVDF nanofibers and composite membranes containing MOF fillers. RSC Advances 2021; 11(47): 29527–29536. doi: 10.1039/D1RA04307B

62. Rath R, Kumar P, Rana D, et al. Sulfonated PVDF nanocomposite membranes tailored with graphene oxide nanoparticles: Improved proton conductivity and membrane selectivity thereof. Journal of Materials Science 2022; 57: 3565–3585. doi: 10.1007/s10853-021-06803-3

63. Gradov OV, Gradova MA, Kholuiskaya SN, Olkhov AA. Electron plasma charging effects on the biocompatible electrospun dielectric fibers. IEEE Transactions on Plasma Science 2021; 50(1): 178–186. doi: 10.1109/TPS.2021.3130854

64. Shahravan A, Lucas C, Matsoukas T. Nanowire charging in collisionless plasma. Journal of Applied Physics 2010; 108(8): 083303. doi: 10.1063/1.3483300

65. Simpson JA, Rabinowitz D, Tuzzolino AJ. Cosmic dust investigations: I. PVDF detector signal dependence on mass and velocity for penetrating particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1989; 279(3): 611–624. doi: 10.1016/0168-9002(89)91311-9

66. Simpson JA, Tuzzolino AJ. Cosmic dust investigations: II. Instruments for measurement of particle trajectory, velocity and mass. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1989; 279(3): 625–639. doi: 10.1016/0168-9002(89)91312-0

67. Simpson JA, Tuzzolino AJ. Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1985; 236(1): 187–202. doi: 10.1016/0168-9002(85)90145-7

68. Tuzzolino AJ. Applications of PVDF dust sensor systems in space. Advances in Space Research 1996; 17(12): 123–132. doi: 10.1016/0273-1177(95)00769-B

69. Shu A, Bugiel S, Grün E, et al. Cratering studies in polyvinylidene fluoride (PVDF) thin films. Planetary and Space Science 2013; 89: 29–35. doi: 10.1016/j.pss.2013.05.001

70. Jones GD, Assink RA, Dargaville TR, et al. Characterization, Performance and Optimization of PVDF as A Piezoelectric Film for Advanced Space Mirror Concepts. Sandia National Laboratories; 2005.

71. Dargaville TR, Celina M, Martin JW, Banks BA. Evaluation of piezoelectric PVDF polymers for use in space environments. II. Effects of atomic oxygen and vacuum UV exposure. Journal of Polymer Science Part B: Polymer Physics 2005; 43(18): 2503–2513. doi: 10.1002/polb.20549

72. Dargaville TR, Elliott JM, Celina M. Evaluation of piezoelectric PVDF polymers for use in space environments. III. Comparison of the effects of vacuum UV and gamma radiation. Journal of Polymer Science Part B: Polymer Physics 2006; 44(22): 3253–3264. doi: 10.1002/polb.20966

73. Celina MC, Dargaville TR, Chaplya PM, Clough RL. Piezoelectric PVDF materials performance and operation limits in space environments. MRS Online Proceedings Library (OPL) 2004; 851: NN9.11. doi: 10.1557/PROC-851-NN9.11

74. Bai Y, Xiao C, Wei Z, Yin L. Study on structure health monitoring method of space vehicle based on PVDF piezoelectric film. Journal of Physics: Conference Series 2023; 2479: 012022. doi: 10.1088/1742-6596/2479/1/012022

75. Ivanov NN, Ivanov AN. A sensor for the spatial registration and measurement of particles parameters in near and deep space—Experimental investigation of SiO2-aerogel characteristics. Solar System Research 2014; 48: 549–554. doi: 10.1134/S0038094614070090

76. Dargaville T, Celina M, Chaplya P, Assink R. Evaluation of piezoelectric PVDF polymers for use in space environments. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference; 19–22 April 2004; Palm Springs, California, USA. p. 1547.

77. Balmain KG. Charging of spacecraft materials simulated in a scanning electron microscope. Electronics Letters 1973; 9(23): 544–546. doi: 10.1049/el:19730401

78. Czeremuszkin G, Latreche M, Wertheimer MR. Charging/discharge events in coated spacecraft polymers during electron beam irradiation in a scanning electron microscope. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2001; 185(1–4): 88–99. doi: 10.1016/S0168-583X(01)00836-9

79. Quan X, Ji Y, Zhang H, et al. Charging compensation of alumina samples by using an oxygen microinjector in the environmental scanning electron microscope. Scanning 2006; 28(5): 289–293. doi: 10.1002/sca.4950280508

80. Wan D, Deng Y, Meling JIH, et al. Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in-situ hydrogen charging inside an environmental scanning electron microscope. Acta Materialia 2019; 170: 87–99. doi: 10.1016/j.actamat.2019.03.032

81. Brink J, Sherman M, Berriman J, Chiu W. Charging phenomena observed on biological specimens in a 400-KV electron cryo-microscope. In: Proceedings of the 52nd Annual Meeting of the Microscopy Society of America; 31 July–5 August 1994; New Orleans, LA, USA. pp. 118–119.

82. Le Berre JF, Demers H, Demopoulos GP, Gauvin R. Examples of charging effects on the spectral quality of X-ray microanalysis on a glass sample using the variable pressure scanning electron microscope. Scanning 2007; 29(6): 270–279. doi: 10.1002/sca.20071

83. Le Berre JF, Demopoulos G, Gauvin R. Charging effects on the spectral quality of X-ray microanalysis using the variable pressure scanning electron microscope. Microscopy and Microanalysis 2007; 13(S02): 1478–1479. doi: 10.1017/S1431927607073849

84. Marcinko T. Technique for controlling surface charging of plastic and ceramic IC packages in the scanning electron microscope by the use of topical antistats. In: Electrical Overstress/Electrostatic Discharge Symposium Proceedings (EOS-14); 16–18 September 1992; Dallas, TX, USA. p. 5.

85. Brunner M, Schmid R. Charging effects in low-voltage scanning electron microscope metrology. Scanning Electron Microscopy 1986; (2): 377–382.

86. Zobačová J, Frank L. Specimen charging and detection of signal from non-conductors in a cathode lens-equipped scanning electron microscope. Scanning 2003; 25(3): 150–156. doi: 10.1002/sca.4950250307

87. Emerson L, Cox G. Charging artefacts in atomic force microscopy. Micron 1994; 25(3): 267–269. doi: 10.1016/0968-4328(94)90032-9

88. Boer EA, Bell LD, Brongersma ML, et al. Charging of single Si nanocrystals by atomic force microscopy. Applied Physics Letters 2001; 78: 3133–3135.

89. Nahum E, Ebenstein Y, Aharoni A, et al. Transport and charging in single semiconductor nanocrystals studied by conductance atomic force microscopy. Nano Letters 2004; 4(1): 103–108. doi: 10.1021/nl034928b

90. Pang CL, Ashworth TV, Raza H, et al. A non-contact atomic force microscopy and ‘force spectroscopy’ study of charging on oxide surfaces. Nanotechnology 2004; 15(7): 862. doi: 10.1088/0957-4484/15/7/027

91. Zaghloul U, Papaioannou GJ, Bhushan B, et al. Effect of deposition gas ratio, RF power, and substrate temperature on the charging/discharging processes in PECVD silicon nitride films for electrostatic NEMS/MEMS reliability using atomic force microscopy. Journal of Microelectromechanical Systems 2011; 20(6): 1395–1418. doi: 10.1109/JMEMS.2011.2167670

92. Cui XD, Zarate X, Tomfohr J, et al. Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers. Ultramicroscopy 2002; 92(2): 67–76. doi: 10.1016/s0304-3991(02)00069-4

93. Tivanski AV, Walker GC. Ferrocenylundecanethiol self-assembled monolayer charging correlates with negative differential resistance measured by conducting probe atomic force microscopy. Journal of the American Chemical Society 2005; 127(20): 7647–7653. doi: 10.1021/ja0514491

94. Reagan MA, Kashyn D, Juhl S, et al. Electric charging and nanostructure formation in polymeric films using combined amplitude-modulated atomic force microscopy-assisted electrostatic nanolithography and electric force microscopy. Applied Physics Letters 2008; 93(3): 033109. doi: 10.1063/1.2957985

95. Mirkowska M, Kratzer M, Teichert C, Flachberger H. The contact charging of insulators by atomic force microscopy. In: Proceedings of the 62nd Annual Meeting of the Austrian Physical Society; 18–21 September 2012; Graz, Austria. p. 171.

96. Bunker MJ, Davies MC, James MB, Roberts CJ. Direct observation of single particle electrostatic charging by atomic force microscopy. Pharmaceutical Research 2007; 24(6): 1165–1169. doi: 10.1007/s11095-006-9230-z

97. Chotsuwan C, Blackstock SC. Single molecule charging by atomic force microscopy. Journal of the American Chemical Society 2008; 130(38): 12556–12557. doi: 10.1021/ja802419y

98. Fatayer S, Schuler B, Steurer W, et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nature Nanotechnology 2018; 13(5): 376–380. doi: 10.1038/s41565-018-0087-1

99. Kocic N, Weiderer P, Keller S, et al. Periodic charging of individual molecules coupled to the motion of an atomic force microscopy tip. Nano Letters 2015; 15(7): 4406–4411. doi: 10.1021/acs.nanolett.5b00711

100. Otobe M, Yajima H, Oda S. Observation of the single electron charging effect in nanocrystalline silicon at room temperature using atomic force microscopy. Applied Physics Letters 1998; 72(9): 1089–1091. doi: 10.1063/1.120973

101. Stomp R, Miyahara Y, Schaer S, et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Physical Review Letters 2005; 94(5): 56802. doi: 10.1103/PhysRevLett.94.056802

102. Tekiel A. Ultra-high Vacuum Fabrication of Nanoscale Systems for Studying Single-electron Charging by Room-temperature Atomic Force Microscopy [PhD thesis]. McGill University Libraries; 2013.

103. Roy-Gobeil A. Single-electron Charging Using Atomic Force Microscopy [PhD thesis]. McGill University Libraries; 2017.

104. Ellis SG. Specimen charging in the electron microscope and some observations on the size of polystyrene latex particles. Journal of Applied Physics 1952; 23(7): 728–732. doi: 10.1063/1.1702291

105. Jachowicz J, Garcia M, Wis-Surel G. Relationship between triboelectric charging and surface modification of human hair. Journal of the Society of Cosmetic Chemists 1984; 35(6): 339–340.

106. Jachowicz J, Garcia M, Wis-Surel G. Relationship between triboelectric charging and surface. Journal of the Society of Cosmetic Chemists 1985; 36: 189–212.

107. Jachowicz J, Garcia M, Wis-Surel G. Relationship between triboelectric charging and surface modification of human hair: Polymeric versus monomeric long alkyl chain quaternary ammonium salts. Textile Research Journal 1987; 57(9): 543–548. doi: 10.1177/004051758705700910

108. Seshadri IP, Bhushan B. Effect of rubbing load on nanoscale charging characteristics of human hair characterized by AFM based Kelvin probe. Journal of Colloid and Interface Science 2008; 325(2): 580–587. doi: 10.1016/j.jcis.2008.06.015

109. Walter M. In-situ Tensile Deformation and Surface Charging Characterization of Human Hair with Atomic Force Microscopy [PhD thesis]. Ohio State University; 2008.

110. Stephenson LE, Wollkind DJ. Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model systems. Journal of Mathematical Biology 1995; 33: 771–815. doi: 10.1007/BF00187282

111. Henry BI, Langlands TAM, Wearne SL. Turing pattern formation in fractional activator-inhibitor systems. Physical Review E 2005; 72(2): 026101. doi: 10.1103/PhysRevE.72.026101

112. Nakao H, Mikhailov AS. Turing patterns in network-organized activator-inhibitor systems. Nature Physics 2010; 6(7): 544–550. doi: 10.1038/nphys1651

113. Hata S, Nakao H, Mikhailov AS. Global feedback control of Turing patterns in network-organized activator-inhibitor systems. Europhysics Letters 2012; 98: 64004. doi: 10.1209/0295-5075/98/64004

114. Zhang L, Tian C. Turing pattern dynamics in an activator-inhibitor system with superdiffusion. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 2014; 90(6): 062915. doi: 10.1103/PhysRevE.90.062915

115. dos S. Silva FA, Viana RL, Lopes SR. Pattern formation and Turing instability in an activator-inhibitor system with power-law coupling. Physica A: Statistical Mechanics and its Applications 2015; 419: 487–497. doi: 10.1016/j.physa.2014.09.059

116. Wu R, Zhou Y, Shao Y, Chen L. Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model. Physica A: Statistical Mechanics and its Applications 2017; 482: 597–610. doi: 10.1016/j.physa.2017.04.053

117. Wang J, Li Y, Hou X. Supercritical Hopf bifurcation and Turing patterns for an activator and inhibitor model with different sources. Advances in Difference Equations 2018; 2018(1): 241. doi: 10.1186/s13662-018-1697-5

118. Talukdar D, Dutta K. Decaying localized structures beyond Turing space in an activator-inhibitor system. The European Physical Journal Plus 2020; 135(1): 53. doi: 10.1140/epjp/s13360-019-00063-6

119. Yochelis A. The nonlinear initiation of side-branching by activator-inhibitor-substrate (Turing) morphogenesis. Chaos 2021; 31(5): 051102. doi: 10.1063/5.0050630

120. Kato Y, Nakao H. Turing instability in quantum activator-inhibitor systems. Scientific Reports 2022; 12(1): 15573. doi: 10.1038/s41598-022-19010-0

121. Kato Y, Nakao H. Turing instability of activator-inhibitor units in open quantum systems. Bulletin of the American Physical Society 2023; in press.

122. Gradov OV, Gradova MA, Iordanskii AL, et al. Isopotential mapping of electron beam induced dielectric charging of the PHB nonwoven fabric structures using sobel-feldman gradient operator. In: Proceedings of the 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE); 14–26 September 2020; Tomsk, Russia. pp. 662–665.

123. Gradov OV, Gradova MA, Maklakova IA, Kholuiskaya SN. Towards electron-beam-driven soft/polymer fiber microrobotics for vacuum conditions. Materials Research Proceedings 2022; 21: 370–383. doi: 10.21741/9781644901755-64

124. Adamoviz ED, Buryanskaya E, Gradov O. Membrane-mimetic proton-exchange structures as components of complex scaffolds with metastable nanochannels (Russian). Genes and Cells 2022; 17(3): 9. doi: 10.23868/gc121899

125. Kochervinskii VV, Gradov OV, Gradova MA. Fluorine-containing ferroelectric polymers: applications in engineering and biomedicine. Russian Chemical Reviews 2022; 91(11): RCR5037. doi: 10.57634/RCR5037

126. Gradov O, Gradova M, Kochervinskii V. Biocompatible biomimetic polymer structures with an active response for implantology and regenerative medicine Part I. Basic principles of the active implant’s biocompatibility. Siberian Journal of Life Sciences and Agriculture 2023; 15(1): 346-377. doi: 10.12731/2658-6649-2023-15-1-346-377

127. Gradov OV, Gradova MA, Kochervinskii VV. Biomimetic biocompatible ferroelectric polymer materials with an active response for implantology and regenerative medicine. In: Organic Ferroelectric Materials and Applications. Elsevier; 2022. pp. 571–619.

128. Bur’yanskaya EL, Gradov OV, Gradova MA, et al. Biomedical applications of ferroelectric polymers based on vinylidene fluoride in regenerative medicine (Russian). Genes and Cells 2022; 17(3): 39. doi: 10.23868/gc122163

129. Gradov OV, Gradova MA, Olkhov AA, Iordanskiy AL. Charge propagation along the polymer fiber of polyhydroxybutyrate: Is it possible to apply the cable model? Key Engineering Materials 2020; 869: 246–258. doi: 10.4028/www.scientific.net/KEM.869.246

130. Dubljevic S. Constraints-driven optimal actuation policies for diffusion-reaction processes with collocated actuators and sensors. Industrial & Engineering Chemistry Research 2008; 47(1): 105–115. doi: 10.1021/ie070546v

131. Li J, Wu Z, Wen C. Adaptive stabilization for a reaction-diffusion equation with uncertain nonlinear actuator dynamics. Automatica 2021; 128: 109594. doi: 10.1016/j.automatica.2021.109594

132. Zhang XW, Wu HN, Wang JL, et al. Membership-function-dependent fuzzy control of reaction-diffusion memristive neural networks with a finite number of actuators and sensors. Neurocomputing 2022; 514: 94–100. doi: 10.1016/j.neucom.2022.09.126

133. Buryanskaya EL, Gradov OV, Gradova MA, et al. Time-resolved multifractal analysis of electron beam induced piezoelectric polymer fiber dynamics: Towards multiscale thread-based microfluidics or acoustofludics. In: Altenbach H, Bruno G, Eremeyev VA, et al. (editors). Mechanics of Heterogeneous Materials. Springer, Cham; 2023. Volume 195. pp. 35–58.


DOI: https://doi.org/10.59400/mtr.v1i1.135
(64 Abstract Views, 23 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Eugene D. Adamovich, Eugenia L. Buryanskaya, Margaret A. Gradova, Oleg V. Gradov

License URL: http://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License.