Open Journal Systems

From desolvation-induced self-organization on the MALDI anchor target chip surfaces to laser-induced self-organization in MALDI techniques: Correlation-spectral analysis and complex wavelet analysis of tesiographic spots on the anchor chips

Theodor K. Orekhov, Oleg V. Gradov

Abstract

This article proposes to analyze the formation and “morphogenesis” during desolvation of drops on MALDI targets and target chips using 2D correlation spectral analysis based on the two-dimensional Fourier transform and wavelet spectroscopy methods in the real and imaginary regions. The results of the correlation-spectral and wavelet analysis are shown in the illustrations in the text of the article.


Keywords

desolvation; dehydration; LDI MS; MALDI; LAMMA; anchor chips

Full Text:

PDF

References

1. Ropartz D, Lemoine J, Giuliani A, et al. Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: Photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment. Analytica Chimica Acta 2014; 807: 84–95. doi: 10.1016/j.aca.2013.11.018

2. Sleat DE, Lackland H, Wang Y, et al. The human brain mannose 6-phosphate glycoproteome: A complex mixture composed of multiple isoforms of many soluble lysosomal proteins. Proteomics 2005; 5(6): 1520–1532. doi: 10.1002/pmic.200401054

3. Börnsen KO. Influence of salts, buffers, detergents, solvents, and matrices on MALDI-MS protein analysis in complex mixtures. Methods in Molecular Biology 2000; 146: 387–404. doi: 10.1385/1-59259-045-4:387

4. Shalayel I, Leqraa N, Blandin V, Vallée Y. Straightforward creation of possibly prebiotic complex mixtures of Thiol-Rich peptides. Life (Basel) 2023; 13(4): 983. doi: 10.3390/life13040983

5. Haebel S, Bahrke S, Peter MG. Quantitative sequencing of complex mixtures of heterochitooligosaccharides by vMALDI-linear ion trap mass spectrometry. Analytical Chemistry 2007; 79(15): 5557–5566. doi: 10.1021/ac062254u

6. Salwiński A, Da Silva D, Delépée R, Maunit B. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures. Journal of the American Society for Mass Spectrometry 2014; 25(4): 538–547. doi: 10.1007/s13361-014-0826-y

7. Meng F, Cargile BJ, Patrie SM, et al. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Analytical Chemistry 2002; 74(13): 2923–2929. doi: 10.1021/ac020049i

8. Quinton L, Demeure K, Dobson R, et al. New method for characterizing highly disulfide-bridged peptides in complex mixtures: Application to toxin identification from crude venoms. Journal of Proteome Research 2007; 6(8): 3216–3223. doi: 10.1021/pr070142t

9. Fernández-de-Cossio J, Gonzalez LJ, Satomi Y, et al. Automated interpretation of mass spectra of complex mixtures by matching of isotope peak distributions. Rapid Communications in Mass Spectrometr: RCM 2004; 18(20): 2465–2472. doi: 10.1002/rcm.1647

10. Schmitt-Kopplin P, Englmann M, Rossello-Mora R, et al. Combining chip-ESI with APLI (cESILI) as a multimode source for analysis of complex mixtures with ultrahigh-resolution mass spectrometry. Analytical and Bioanalytical Chemistry 2008; 391(8): 2803–2809. doi: 10.1007/s00216-008-2211-9

11. Perkins JR, Smith B, Gallagher RT, et al. Application of electrospray mass spectrometry and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for molecular weight assignment of peptides in complex mixtures. Journal of the American Society for Mass Spectrometry 1993; 4(8): 670–684. doi: 10.1016/1044-0305(93)85032-S

12. Vallone PM, Devaney JM, Marino MA, Butler JM. A strategy for examining complex mixtures of deoxyoligonucleotides using ion-pair-reverse-phase high-performance liquid chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and informatics. Analytical Biochemistry 2002; 304(2): 257–265. doi: 10.1006/abio.2002.5641

13. Tolmachev AV, Monroe ME, Jaitly N, et al. Mass measurement accuracy in analyses of highly complex mixtures based upon multidimensional recalibration. Analytical Chemistry 2006; 78(24): 8374–8385. doi: 10.1021/ac0606251

14. Whitin JC, Rangan S, Cohen HJ. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins. BMC Research Notes 2013; 6: 358. doi: 10.1186/1756-0500-6-358

15. Beaufour M, Ginguené D, Le Meur R, et al. Liquid native MALDI mass spectrometry for the detection of protein-protein complexes. Journal of the American Society for Mass Spectrometry 2018; 29(10): 1981–1994. doi: 10.1007/s13361-018-2015-x

16. Sjödahl J, Kempka M, Hermansson K, et al. Chip with twin anchors for reduced ion suppression and improved mass accuracy in MALDI-TOF mass spectrometry. Analytical Chemistry 2005; 77(3): 827–832. doi: 10.1021/ac0400966

17. Grasso G, Fragai M, Rizzarelli E, et al. In situ AP/MALDI-MS characterization of anchored matrix metalloproteinases. Journal of Mass Spectrometry: JMS 2006; 41(12): 1561–1569. doi: 10.1002/jms.1126

18. Krásný L, Pompach P, Strohalm M, et al. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. Journal of Mass Spectrometry: JMS 2012; 47(10): 1294–1302. doi: 10.1002/jms.3081

19. Molin L, Cristoni S, Crotti S, et al. Sieve-based device for MALDI sample preparation. I. Influence of sample deposition conditions in oligonucleotide analysis to achieve significant increases in both sensitivity and resolution. Journal of Mass Spectrometry: JMS 2008; 43(11): 1512–1520. doi: 10.1002/jms.1428

20. Cristoni S, Molin L, Crotti S, et al. Sieve-based device for MALDI sample preparation. II. Instrumental parameterization. Journal of Mass Spectrometry: JMS 2009; 44(11): 1579–1586. doi: 10.1002/jms.1637

21. Molin L, Cristoni S, Seraglia R, Traldi P. Sieve-based device for MALDI sample preparation. III. Its power for quantitative measurements. Journal of Mass Spectrometry: JMS 2011; 46(2): 230–236. doi: 10.1002/jms.1885

22. Hoteling AJ, Erb WJ, Tyson RJ, Owens KG. Exploring the importance of the relative solubility of matrix and analyte in MALDI sample preparation using HPLC. Analytical Chemistry 2004; 76(17): 5157–5164. doi: 10.1021/ac049566m

23. Hanton SD, Parees DM. Extending the solvent-free MALDI sample preparation method. Journal of the American Society for Mass Spectrometry 2005; 16(1): 90–93. doi: 10.1016/j.jasms.2004.09.019

24. Cho Y, Kim E, Han SK, et al. Rapid identification of vibrio species isolated from the southern coastal regions of Korea by MALDI-TOF mass spectrometry and comparison of MALDI sample preparation methods. Journal of Microbiology and Biotechnology 2017; 27(9): 1593–1601. doi: 10.4014/jmb.1704.04056

25. Skelton R, Dubois F, Zenobi R. A MALDI sample preparation method suitable for insoluble polymers. Analytical Chemistry 2000; 72(7): 1707–1710. doi: 10.1021/ac991181u

26. Aerni HR, Cornett DS, Caprioli RM. Automated acoustic matrix deposition for MALDI sample preparation. Analytical Chemistry 2006; 78(3): 827–834. doi: 10.1021/ac051534r

27. Fenyo D, Wang Q, DeGrasse JA, et al. MALDI sample preparation: The ultra thin layer method. Journal of Visualized Experiments: JoVE 2007; 3(3): 192. doi: 10.3791/192

28. Andersson T, Johansson M, Bolmsjö G, James P. Automating MALDI sample plate loading. Journal of Proteome Research 2007; 6(2): 894–896. doi: 10.1021/pr0603607

29. Patil AA, Chiang CK, Wen CH, Peng WP. Forced dried droplet method for MALDI sample preparation. Analytica Chimica Acta 2018; 1031: 128–133. doi: 10.1016/j.aca.2018.05.056

30. Gholipour Y, Erra-Balsells R, Nonami H. In situ pressure probe sampling and UV-MALDI MS for profiling metabolites in living single cells. Mass Spectrometry (Tokyo, Japan) 2012; 1(1): A0003. doi: 10.5702/massspectrometry.A0003

31. Chen B, Vavrek M, Gundersdorf R, et al. Combining MALDI mass spectrometry imaging and droplet-base surface sampling analysis for tissue distribution, metabolite profiling, and relative quantification of cyclic peptide melanotan II. Analytica Chimica Acta 2020; 1125: 279–287. doi: 10.1016/j.aca.2020.05.050

32. Wong KFC, Greatorex RE, Gidman CE, et al. Surface-sampling mass spectrometry to study proteins and protein complexes. Essays in Biochemistry 2023; 67(2): 229–241. doi: 10.1042/EBC20220191

33. Wang Y, Schneider BB, Covey TR, Pawliszyn J. High-performance SPME/AP MALDI system for high-throughput sampling and determination of peptides. Analytical Chemistry 2005; 77(24): 8095–8101. doi: 10.1021/ac051222o

34. Fu Q, Tang J, Cui M, et al. Application of porous metal enrichment probe sampling to single cell analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Journal of Mass Spectrometry: JMS 2016; 51(1): 62–68. doi: 10.1002/jms.3729

35. Haidas D, Napiorkowska M, Schmitt S, Dittrich PS. Parallel sampling of nanoliter droplet arrays for noninvasive protein analysis in discrete yeast cultivations by MALDI-MS. Analytical Chemistry 2020; 92(5): 3810–3818. doi: 10.1021/acs.analchem.9b05235

36. Taguchi Y, Ishida Y, Ohtani H, Matsubara H. Direct analysis of an oligomeric hindered amine light stabilizer in polypropylene materials by MALDI-MS using a solid sampling technique to study its photostabilizing action. Analytical Chemistry 2004; 76(3): 697–703. doi: 10.1021/ac030270a

37. Shiau KJ, Hung SU, Lee HW, Wu CC. Nanodiamond-based two-step sampling of multiply and singly phosphorylated peptides for MALDI-TOF mass spectrometry analysis. The Analyst 2011; 136(9): 1922–1927. doi: 10.1039/c0an01046d

38. Mess A, Enthaler B, Fischer M, et al. A novel sampling method for identification of endogenous skin surface compounds by use of DART-MS and MALDI-MS. Talanta 2013; 103: 398–402. doi: 10.1016/j.talanta.2012.10.073

39. Pereira I, Banstola B, Wang K, et al. Matrix-assisted laser desorption ionization imaging and laser ablation sampling for analysis of fungicide distribution in apples. Analytical Chemistry 2019; 91(9): 6051–6056. doi: 10.1021/acs.analchem.9b00566

40. Lawal RO, Richardson LT, Dong C, et al. Deep-ultraviolet laser ablation sampling for proteomic analysis of tissue. Analytica Chimica Acta 2021; 1184: 339021. doi: 10.1016/j.aca.2021.339021

41. Chen C, Huang Y, Wu P, et al. In vivo microcapillary sampling coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry for real-time monitoring of paraquat and diquat in living vegetables. Food Chemistry 2022; 388: 132998. doi: 10.1016/j.foodchem.2022.132998

42. Sun S, Tang W, Li B. Authentication of single herbal powders enabled by microscopy-guided in situ auto-sampling combined with matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2023; 95(19): 7512–7518. doi: 10.1021/acs.analchem.2c05517

43. Chen X, Gao J, Wang T, et al. Hepatocarcinoma discrimination by ratiometric lipid profiles using tip-contact sampling/ionization mass spectrometry. Analytical Chemistry 2019; 91(16): 10376–10380. doi: 10.1021/acs.analchem.9b02623

44. Donnarumma F, Camp EE, Cao F, Murray KK. Infrared laser ablation with vacuum capture for fingermark sampling. Journal of the American Society for Mass Spectrometry 2017; 28(9): 1958–1964. doi: 10.1007/s13361-017-1703-2

45. Zhang H, Zhang C, Lajoie GA, Yeung KK. Selective sampling of phosphopeptides for detection by MALDI mass spectrometry. Analytical Chemistry 2005; 77(18): 6078–6084. doi: 10.1021/ac050565j

46. Ishida Y, Kitagawa K, Goto K, Ohtani H. Solid sampling technique for direct detection of condensed tannins in bark by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 2005; 19(5): 706–710. doi: 10.1002/rcm.1845

47. Pelzer AE, Feuerstein I, Fuchsberger C, et al. Influence of blood sampling on protein profiling and pattern analysis using matrix-assisted laser desorption/ionisation mass spectrometry. BJU International 2007; 99(3): 658–662. doi: 10.1111/j.1464-410X.2006.06678.x

48. Xiang P, Lin P. Solid sampling technique for direct detection of condensed tannins in bark by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry 2006; 20(3): 521. doi: 10.1002/rcm.2291

49. Taguchi Y, Ishida Y, Matsubara H, Ohtani H. Quantitative analysis of an oligomeric hindered amine light stabilizer in polypropylene by matrix-assisted laser desorption/ionization mass spectrometry using a solid sampling technique. Rapid Communications in Mass Spectrometry 2006; 20(8): 1345–1350. doi: 10.1002/rcm.2452

50. Rapis EG, Gasanova G. Autowave process in the dynamics of phase transition in a protein film. Technical Physics 1991; 36(4): 406–412.

51. Rapis EG. The self-organization of protein. Technical Physics Letters 1995; 21(5): 321-324.

52. Rapis EG. Self-assembly of cluster protein films (allotropic nonequilibrium noncrystalline modification) during the process or their condensation. Technical Physics 2000; 45(1): 121–131. doi: 10.1134/1.1259582

53. Rapis E. Properties and symmetry of the solid cluster phase of protein. Technical Physics 2001; 46: 1307–1313. doi: 10.1134/1.1412069

54. Rapis E. A change in the physical state of a nonequilibrium blood plasma protein film in patients with carcinoma. Technical Physics 2002; 47: 510–512. doi: 10.1134/1.1470608

55. Golbraikh E, Rapis EG, Moiseev SS. On the crack pattern formation in a freely drying protein film. Technical Physics 2003; 48: 1333–1337. doi: 10.1134/1.1620131

56. Rapis E. Self-organization and supramolecular chemistry of protein films from the nano-to the macroscale. Technical Physics 2004; 49: 494–498. doi: 10.1134/1.1736921

57. Rapis E. On the problem of nucleation (cell formation) in self-organization of protein nanostructures in vitro and in vivo. Technical Physics 2005; 50: 780–786. doi: 10.1134/1.1947357

58. Rapis E. Relaxation of the energy of the protein colloidal solution arising at drying in open and closed systems. Technical Physics 2005; 50: 1236–1238. doi: 10.1134/1.2051470

59. Rapis E. Nonequilibrium state of self-organized protein nanostructures. Technical Physics 2006; 51: 268–273. doi: 10.1134/S1063784206020198

60. Rapis E. On the nonequilibrium phase transition in protein. Technical Physics 2007; 52: 787–792. doi: 10.1134/S1063784207060199

61. Rapis E. Evolutionary aspect of protein self-organization. Technical Physics 2008; 53: 783–788. doi: 10.1134/S1063784208060182

62. Fishchenko VK, Goncharova AA, Dolgikh GI, et al. Express image and video analysis technology QAVIS: Application in system for video monitoring of Peter the Great Bay (Sea of Japan/East Sea). Journal of Marine Science and Engineering 2021; 9(10): 1073. doi: 10.3390/jmse9101073

63. Fischenko V, Mitnik L, Dolgikh G, et al. QAVIS technology: Measuring wave processes in coastal zones based on the analysis of internet video broadcast. In: Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium; 17–22 July 2022; Kuala Lumpur, Malaysia. pp. 6801–6804.

64. Goncharova AA, Fischenko VK, Dubina VA. Use the express-analysis program QAVIS for the satellite monitoring. Current Problems in Remote Sensing of the Earth from Space 2012; 9(3): 293–298.

65. Goncharova AA, Fischenko VK. QAVIS—Program for quick image and video analysis. In: Proceedings of 8th Open German-Russian Workshop on Pattern Recognition and Image Understanding (OGRW-8 2011). p. 85.

66. Fishchenko VK, Dolgikh GI, Zimin PS, Subote AE. Some results of oceanological video monitoring. Doklady Earth Sciences 2018; 482: 1244–1247. doi: 10.1134/S1028334X18090283

67. Dolgikh GI, Fishchenko VK, Goncharova AA. Potential for recording of waves and sea level fluctuations in the world ocean coastal areas by internet video analysis. Doklady Earth Sciences 2019; 488: 1264–1267. doi: 10.1134/S1028334X19100209

68. Dolgikh GI, Fishchenko VK, Goncharova AА. About the possibility of registration of waves and sea level fluctuations in coastal areas of the World Ocean based on analysis of video on the Internet. Doklady Earth Sciences 2019; 488(6): 667–672. doi: 10.31857/S0869-56524886667-672

69. Gradov OV, Aleksandrov PL, Gradova MA. Study of mineral samples relevant for desert locations using software correlation spectral analysis of scanning electron microscopy registers: From 2D Fourier spectra to online analysis of statistics of integral spatial characteristics. Software Systems and Computational Methods 2019; 4: 125–171. doi: 10.7256/2454-0714.2019.4.31379

70. Gradov OV, Gradova MA, Maklakova IA, Kholuiskaya SN. Towards electron-beam-driven soft/polymer fiber microrobotics for vacuum conditions. Materials Research Proceedings 2022; 21: 370–383. doi: 10.21741/9781644901755-64

71. Skrynnik AA, Oganessian VA, Jablokov AG, Gradov OV. System for semiautomatic tissue classification based on optical diffractometer for biopolymer structure analysis. Morphologia 2018; 12(3): 164–171. doi: 10.26641/1997-9665.2018.3.164-171

72. Adamovich E, Buryanskaya E, Elfimov A, et al. Towards Femtoscan-assisted analysis of liquid crystal self-organization on different polymer and glass surfaces for lab-on-a-chip and lab-on-a-dish applications, including optofluidic and flexoelectric ones. Recent Progress in Materials 2023; 5: 1–20.


DOI: https://doi.org/10.59400/mtr.v1i1.124
(25 Abstract Views, 23 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Theodor K. Orekhov, Oleg V. Gradov

License URL: http://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License.