Open Journal Systems

Mechanical properties of polypyrrole/SnO2 nanocomposites and its LPG sensing application

Md Shakeel Ahmed, Ameena Parveen, Sriram Manjunath

Abstract

Polypyrrole/SnO2 nanocomposites were created using in-situ polymerization techniques. The nanocomposites were described using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their thermal properties were studied using a Differential Scanning Calorimeter (DSC). The DC conductivity of the samples was measured as a function of temperature from 30 ℃ to 1900 ℃, and it was observed that increasing the concentration of tin oxide particles improves conductivity due to polaron hopping and composite chain length extension. The tensile strength of PPy nanocomposites doped in PVA thin film up to 6 wt% indicates 64.2 MPa, which may be related to the homogenous distribution of PPy nanocomposite in PVA. The study reveals that because 50 wt% of the nanocomposites have the highest conductivity and sensitivity, these nanocomposites may be useful in future applications.


Keywords

polypyrrole; scanning electron microscopy; conductivity; sensitivity

Full Text:

PDF

References

1. Kotresh S, Ravikiran YT, Vijayakumari SC, Thomas S. Interfacial p-n heterojunction of polyaniline-nickel ferrite nanocomposite as room temperature liquefied petroleum gas sensor. Composite Interfaces 2017; 24(6): 549–561. doi: 10.1080/09276440.2017.1241523

2. Mu B, Zhang W, Wang A. Template synthesis of graphene/polyaniline hybrid hollow microspheres as electrode materials for high-performance supercapacitor. Journal of Nanoparticle Research 2014; 16: 2432. doi: 10.1007/s11051-014-2432-0

3. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M. Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. Journal of Polymer Research 2016; 23: 91. doi: 10.1007/s10965-016-0983-8

4. Lee RH, Chi CH, Hsu YC. Platinum nanoparticle/self-doping polyaniline composite based counter electrodes for dye-sensitized solar cells. Journal of Nanoparticle Research 2013; 15: 1733. doi: 10.1007/s11051-013-1733-z

5. Shin S, Kim J, Kim YH, Kim SI. Enhanced performance of organic light-emitting diodes by using hybrid anodes composed of graphene and conducting polymer. Current Applied Physics 2013; 13: S144–S147. doi: 10.1016/j.cap.2013.01.016

6. Patil SV, Bulakhe RN, Deshmukh PR, et al. LPG sensing by p-polyaniline/n-PbS heterojunction capacitance structure. Sensors and Actuators A: Physical 2013; 201: 387–394. doi: 10.1016/j.sna.2013.07.019

7. Joshi SS, Gujar TP, Shinde VR, Lokhande CD. Fabrication of n-CdTe/p-polyaniline heterojunction-based room temperature LPG sensor. Sensors and Actuators B: Chemical 2008; 132(1): 349–355. doi: 10.1016/j.snb.2008.01.059

8. Patil SJ, Lokhande AC, Yadav AA, Lokhande CD. Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. Journal of Materials Science: Materials in Electronics 2016; 27: 7505–7508. doi: 10.1007/s10854-016-4729-5

9. Singh S, Singh A, Yadav BC, Tandon P. Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Materials Science in Semiconductor Processing 2014; 23: 122–135. doi: 10.1016/j.mssp.2014.02.048

10. Kumar ER, Jayaprakash R, Devi GS, Reddy PSP. Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. Journal of Magnetism and Magnetic Materials 2014; 355: 87–92. doi: 10.1016/j.jmmm.2013.11.051

11. Sulthana S, Rafiuddin, Khan MZ, Umar K. Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. Journal of Alloys and Compounds 2012; 535: 44–49. doi: 10.1016/j.jallcom.2012.04.081

12. Sun ZX, Su FW, Forsling W, Samskog PO. Surface Characteristics of magnetite in aqueous suspension. Journal of Colloid and Interface Science 1998; 197(1): 151–159. doi: 10.1006/jcis.1997.5239

13. Jiang J, Li L, Xu F. Polyaniline-LiNi ferrite core-shell composite: Preparation, characterization and properties. Materials Science and Engineering: A 2007; 456(1–2): 300–304. doi: 10.1016/j.msea.2006.11.143

14. Zhuravlev VA, Minin RV, Itin VI, Lilenko IY. Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion. Journal of Alloys and Compounds 2017; 692: 705–712. doi: 10.1016/j.jallcom.2016.09.069

15. Kotresh S, Ravikiran YT, Tiwari SK, Vijaya Kumari SC. Polyaniline-cadmium ferrite nanostructured composite for room-temperature liquefied petroleum gas sensing. Journal of Electronic Materials 2017; 46: 5240–5247. doi: 10.1007/s11664-017-5535-4

16. Quillard S, Louarn G, Lefrant S, MacDiarmid AG. Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B 1994; 50: 12496–12508. doi: 10.1103/PhysRevB.50.12496

17. Geethalakshmi D, Muthukumarasamy N, Balasundaraprabhu R. Effect of dopant concentration on the properties of HCl-doped PANI thin films prepared at different temperatures. Optik 2014; 125(3): 1307–1310. doi: 10.1016/j.ijleo.2013.08.014

18. Wang PC, Dan Y, Liu LH. Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped polyaniline nanofibers. Materials Chemistry and Physics 2014; 144(1–2): 155–161. doi: 10.1016/j.matchemphys.2013.12.035

19. Li X, Wang G, Li X. Surface modification of nano-SiO2 particles using polyaniline. Surface and Coatings Technology 2005; 197(1): 56–60. doi: 10.1016/j.surfcoat.2004.11.021

20. Waldron RD. Infrared spectra of ferrites. Physical Review Journals Archive 1955; 99(6): 1727–1735. doi: 10.1103/PhysRev.99.1727

21. Zhang X, Feng M, Qu R, et al. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chemical Engineering Journal 2016; 301: 1–11. doi: 10.1016/j.cej.2016.04.096

22. Khairy M. Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synthetic Metals 2014; 189: 34–41. doi: 10.1016/j.synthmet.2013.12.022

23. Khafagy RM. Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core-shell structure. Journal of Alloys and Compounds 2011; 509(41): 9849–9857. doi: 10.1016/j.jallcom.2011.07.008

24. Briceño S, Castillo HD, Sagredo V, et al. Structural, catalytic and magnetic properties of Cu1−XCoXFe2O4. Applied Surface Science 2012; 263: 100–103. doi: 10.1016/j.apsusc.2012.09.007

25. Li X, Wang G, Li X. Surface modification of nano-SiO2 particles using polyaniline. Surface and Coatings Technology 2005; 197(1): 56–60. doi: 10.1016/j.surfcoat.2004.11.021

26. Min S, Wang F, Han Y. An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites. Journal of Materials Science 2007; 42: 9966–9972. doi: 10.1007/s10853-007-2074-z

27. Mane AT, Navale ST, Sen S, et al. Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Organic Electronics 2015; 16: 195–204. doi: 10.1016/j.orgel.2014.10.045

28. Patterson AL. The scherrer formula for X-Ray particle size determination. Physical Review Journals Archive 1939; 56(10): 978–982. doi: 10.1103/PhysRev.56.978

29. Faisal M, Khasim S. Ku-band EMI shielding effectiveness and dielectric properties of polyaniline-Y2O3 composites. Polymer Science Series A 2014; 56: 366–372. doi: 10.1134/S0965545X14030055

30. Hou H, Xu G, Tan S, Zhu Y. A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: Influence of the synthesis conditions. Infrared Physics & Technology 2017; 85: 261–265. doi: 10.1016/j.infrared.2017.07.008

31. Sonker RK, Yadav BC. Development of Fe2O3-PANI nanocomposite thin film based sensor for NO2 detection. Journal of the Taiwan Institute of Chemical Engineers 2017; 77: 276–281. doi: 10.1016/j.jtice.2017.04.042

32. Ali MN, Chakradhar Goud S, Roy AS. A facile and large-area fabrication method of super hydrophobic self-cleaning polysiloxane/TiO2 nanocomposite films and its dielectric properties. Journal of Materials Science: Materials in Electronics 2020; 31: 12570–12578. doi: 10.1007/s10854-020-03807-8

33. Senthilkumar B, Vijaya Sankar K, Sanjeeviraja C, Kalai Selvan R. Synthesis and physico-chemical property evaluation of PANI-NiFe2O4 nanocomposite as electrodes for supercapacitors. Journal of Alloys and Compounds 2013; 553: 350–357. doi: 10.1016/j.jallcom.2012.11.122

34. Sen T, Shimpi NG, Mishra S, Sharma R. Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensors and Actuators B: Chemical 2014; 190: 120–126. doi: 10.1016/j.snb.2013.07.091

35. Barde RV. Preparation, characterization and CO2 gas sensitivity of polyaniline doped with sodium superoxide (NaO2). Materials Research Bulletin 2016; 73: 70–76. doi: 10.1016/j.materresbull.2015.08.026

36. Navale ST, Khuspe GD, Chougale MA, Patil VB. Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. Royal Society of Chemistry 2014; 4: 27998–28004. doi: 10.1039/C4RA02924K

37. Yang X, Li L, Yan F. Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical 2010; 145(1): 495–500. doi: 10.1016/j.snb.2009.12.065

38. Kotresh S, Ravikiran YT, Vijaya Kumari SC, et al. Solution-based spin cast processed polypyrrole/niobium pentoxide nanocomposite as room temperature liquefied petroleum gas sensor. Materials and Manufacturing Processes 2016; 31(15): 1976–1982. doi: 10.1080/10426914.2016.1151047

39. Barkade SS, Pinjari DV, Nakate UT. Ultrasound assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chemical Engineering and Processing: Process Intensification 2013; 74: 115–123. doi: 10.1016/j.cep.2013.09.005


DOI: https://doi.org/10.59400/mea.v1i1.258
(59 Abstract Views, 28 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Md Shakeel Ahmed, Ameena Parveen, Sriram Manjunath

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License.