A review on Co3O4 nanostructures as the electrodes of supercapacitors
Abstract
Usage of supercapacitors in energy storage applications has now become a new trend due to its high auspicious features. Introduction of pseudocapacitance has increased its weightage to be used in greater number of practical utilization. Electrodes are the major constituents of a supercapacitor based on which the electrochemical performance of the supercapacitor is decided. Among varieties of electrode materials available, transition metal oxides are the most suitable ones to fulfill the required its criteria. Due to the occurrence of faradic redox reactions on the surface of electrodes, selection of efficient and favorable electrode material plays major role. Co3O4 (Cobalt (III) oxide) is one among the most desiring electrode materials due to its various peculiar features. This paper reviews briefly on several factors of Co3O4 as electrode material in supercapacitor applications. It includes comparative discussions towards different synthesize methodologies, influence of its dimensional morphology on the electrochemical outputs like specific capacitance, energy density and the power density.
Keywords
Full Text:
PDFReferences
1. Zhang Q, Liu L, Zhang J, et al. Experimental investigation of starting-up, energy-saving, and emission-reducing performances of hybrid supercapacitor energy storage systems for automobiles. Journal of Energy Storage 2023; 60: 106602. doi: 10.1016/j.est.2022.106602
2. Liu X, Xu F, Li Z, et al. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coordination Chemistry Reviews 2022; 464: 214544. doi: 10.1016/j.ccr.2022.214544
3. Kumar A, Rathore HK, Sarkar D, Shukla A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances 2022; 2(6): e2100187. doi: 10.1002/elsa.202100187
4. Babu B, Kim J, Yoo K. Nanocomposite of SnO2 quantum dots and Au nanoparticles as a battery-like supercapacitor electrode material. Materials Letters 2022; 309: 131339. doi: 10.1016/j.matlet.2021.131339
5. Poudel MB, Kim AA, Lohani PC, et al. Assembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitor. Journal of Energy Storage 2023; 60: 106713. doi: 10.1016/j.est.2023.106713
6. Al Jahdaly BA, Abu-Rayyan A, Taher MM, Shoueir K. Phytosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega 2022; 7(27): 23673–23684. doi: 10.1021/acsomega.2c02305
7. Al Kiey SA, Abdelhamid HN. Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as electrode materials for supercapacitor. Journal of Energy Storage 2022; 55: 105449. doi: 10.1016/j.est.2022.105449
8. Duan Z, Shi XR, Sun C, et al. Interface engineered hollow Co3O4@CoNi2S4 nanostructure for high efficiency supercapacitor and hydrogen evolution. Electrochimica Acta 2022; 412: 140139. doi: 10.1016/j.electacta.2022.140139
9. Zhu YR, Peng PP, Wu JZ, et al. Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics 2019; 336: 110–119. doi: 10.1016/j.ssi.2019.03.022
10. Tian K, Wang JT, Xing L, et al. Nanostructure modulation of Co3O4 films by varying anion sources for pseudocapacitor applications. Solid State Ionics 2021; 371: 115756. doi: 10.1016/j.ssi.2021.115756
11. Nan JJ, Guo S, Alhashmialameer D, et al. Hydrothermal microwave synthesis of Co3O4/In2O3 nanostructures for photoelectrocatalytic reduction of Cr(VI). ACS Applied Nano Materials 2022; 5(7): 8755–8766. doi: 10.1021/acsanm.2c00107
12. Luo S, Wang R, Yin J, et al. Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 2019; 4(2): 3946–3953. doi: 10.1021/acsomega.9b00231
13. Xiao M, Yu X, Guo Y, Ge M. Boosting toluene combustion by tuning electronic metal support interactions in in situ grown Pt@Co3O4 catalysts. Environmental Science & Technology 2022; 56(2): 1376–1385. doi: 10.1021/acs.est.1c07016
14. Barbieri EMS, Lima EPC, Lelis MFF, Freitas MBJG. Recycling of cobalt from spent Li-ion batteries as β-Co (OH)2 and the application of Co3O4 as a pseudocapacitor. Journal of Power Sources 2014; 270: 158–165. doi: 10.1016/j.jpowsour.2014.07.108
15. Xiong S, Yuan C, Zhang X, et al. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chemistry 2009; 15(21): 5320–5326. doi: 10.1002/chem.200802671
16. Luo F, Li J, Lei Y, et al. Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors. Electrochimica Acta 2014; 135: 495–502. doi: 10.1016/j.electacta.2014.04.075
17. Raman V, Suresh S, Savarimuthu PA, et al. Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Experimental and Therapeutic Medicine 2016; 11(2): 553–560. doi: 10.3892/etm.2015.2946
18. Delbari SA, Ghadimi LS, Hadi R, et al. Transition metal oxide-based electrode materials for flexible supercapacitors: A review. Journal of Alloys and Compounds 2021; 857: 158281. doi: 10.1016/j.jallcom.2020.158281
19. Korkmaz S, Kariper IA, Karaman O, Karaman C. The production of rGO/RuO2 aerogel supercapacitor and analysis of its electrochemical performances. Ceramics International 2021; 47(24): 34514–34520. doi: 10.1016/j.ceramint.2021.08.366
20. Roberts AJ, Slade RCT. Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochimica Acta 2010; 55(25): 7460–7469. doi: 10.1016/j.electacta.2010.01.004
21. Zhang X, Shi W, Zhu J, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research 2010; 3: 643–652. doi: 10.1007/s12274-010-0024-6
22. Li J, Liu X. Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Materials Letters 2013; 112: 39–42. doi: 10.1016/j.matlet.2013.08.094
23. Zhang Y, Huang Y. Facile synthesis and characterization of rough surface V2O5 nanomaterials for pseudo-supercapacitor electrode material with high capacitance. Bulletin of Materials Science 2017; 40(6): 1137–1149. doi: 10.1007/s12034-017-1470-5
24. Manikandan K, Dhanuskodi S, Maheswari N, Muralidharan G. SnO2 nanoparticles for supercapacitor application. AIP Conference Proceedings 2016; 1731(1): 050048. doi: 10.1063/1.4947702
25. Prasad KR, Koga K, Miura N. Electrochemical deposition of nanostructured indium oxide: High-performance electrode material for redox supercapacitors. Chemistry of Materials 2004; 16(10): 1845–1847. doi: 10.1021/cm0497576
26. Ahmed AO, Samer BS, Nakate UT, et al. Electrodeposited spruce leaf-like structured copper bismuth oxide electrode for supercapacitor application. Microelectronic Engineering 2020; 229: 111359. doi: 10.1016/j.mee.2020.111359
27. Lorkit P, Panapoy M, Ksapabutr B. Iron oxide-based supercapacitor from ferratrane precursor via sol-gel-hydrothermal process. Energy Procedia 2014; 56: 466–473. doi: 10.1016/j.egypro.2014.07.180
28. Wang H, Shi Y, Li Z, et al. Synthesis and electrochemical performance of Co3O4/graphene. Chemical Research in Chinese Universities 2014; 30(4): 650–655. doi: 10.1007/s40242-014-4109-8
29. Pang H, Li X, Zhao Q, et al. One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy 2017; 35: 138–145. doi: 10.1016/j.nanoen.2017.02.044
30. Che H, Lv Y, Liu A, et al. Facile synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors. Ceramics International 2017; 43(8): 6054–6062. doi: 10.1016/j.ceramint.2017.01.148
31. Cui L, Li J, Zhang XG. Preparation and properties of Co3O4 nanorods as supercapacitor material. Journal of Applied Electrochemistry 2009; 39(10): 1871–1876. doi: 10.1007/s10800-009-9891-5
32. Xie L, Li K, Sun G, et al. Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. Journal of Solid State Electrochemistry 2013; 17(1): 55–61. doi: 10.1007/s10008-012-1856-7
33. Xiao A, Zhou S, Zuo C, et al. Controllable synthesis of mesoporous Co3O4 nanoflake array and its application for supercapacitor. Materials Research Bulletin 2014; 60: 674–678. doi: 10.1016/j.materresbull.2014.09.034
34. Gopalakrishnan M, Srikesh G, Mohan A, Arivazhagan V. In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications. Applied Surface Science 2017; 403: 578–583. doi: 10.1016/j.apsusc.2017.01.092
35. Michalska M, Xu H, Shan Q, et al. Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries. Beilstein Journal of Nanotechnology 2021; 12(1): 424–431. doi: 10.3762/bjnano.12.34
36. Yoshimura M, Byrappa K. Hydrothermal processing of materials: Past, present and future. Journal of Materials Science 2008; 43(7): 2085–2103. doi: 10.1007/s10853-007-1853-x
37. Carregosa JDC, Grilo JPF, Godoi GS, et al. Microwave-assisted hydrothermal synthesis of ceria (CeO2): Microstructure, sinterability and electrical properties. Ceramics International 2020; 46(14): 23271–23275. doi: 10.1016/j.ceramint.2020.06.021
38. Gan YX, Jayatissa AH, Yu Z, et al. Hydrothermal synthesis of nanomaterials. Journal of Nanomaterials 2020; 2020: 8917013. doi: 10.1155/2020/8917013
39. Dhanalakshmi R, Denardin JC. Magnetic field enhanced photoreduction of Cr (VI) over the p-n-p BiFeO3/CoFe2O4/Co3O4 nanocomposites. Journal of Magnetism and Magnetic Materials 2022; 562: 169788. doi: 10.1016/j.jmmm.2022.169788
40. Askari MB, Rozati SM, Salarizadeh P, Azizi S. Reduced graphene oxide supported Co3O4-Ni3S4 ternary nanohybrid for electrochemical energy storage. Ceramics International 2022; 48(11): 16123–16130. doi: 10.1016/j.ceramint.2022.02.160
41. Askari MB, Rozati SM. Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media. Journal of Alloys and Compounds 2022; 900: 163408. doi: 10.1016/j.jallcom.2021.163408
42. Wang Y, Lei Y, Li J, et al. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Applied Materials & Interfaces 2014; 6(9): 6739–6747. doi: 10.1021/am500464n
43. Hou L, Yuan C, Yang L, et al. Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Advances 2011; 1(8): 1521–1526. doi: 10.1039/C1RA00312G
44. Pişkin B, Uygur CS, Aydınol MK. Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials. International Journal of Hydrogen Energy 2020; 45(14): 7874–7880. doi: 10.1016/j.ijhydene.2019.07.249
45. Shwetha KP, Manjunatha C, Kamath MKS, et al. Morphology-controlled synthesis and structural features of ultrafine nanoparticles of Co3O4: An active electrode material for a supercapacitor. Applied Research 2022; 1(4): e202200031. doi: 10.1002/appl.202200031
46. Jamil S, Janjua MRSA, Khan SR. Synthesis of self-assembled Co3O4 nanoparticles with porous sea urchin-like morphology and their catalytic and electrochemical applications. Australian Journal of Chemistry 2017; 70(8): 908–916. doi: 10.1071/CH16694
47. Niveditha CV, Aswini R, Fatima MJJ, et al. Feather like highly active Co3O4 electrode for supercapacitor application: A potentiodynamic approach. Materials Research Express 2018; 5(6): 065501. doi: 10.1088/2053-1591/aac5a7
48. Yuan C, Yang L, Hou L, et al. Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry 2011; 21(45): 18183–18185. doi: 10.1039/C1JM14173B
49. Deng J, Kang L, Bai G, et al. Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochimica Acta 2014; 132: 127–135. doi: 10.1016/j.electacta.2014.03.158
50. Toghan A, Khairy M, Kamar EM, Mousa MA. Effect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor application. Journal of Materials Research and Technology 2022; 19: 3521–3535. doi: 10.1016/j.jmrt.2022.06.095
51. Gao Y, Chen S, Cao D, et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources 2010; 195(6): 1757–1760. doi: 10.1016/j.jpowsour.2009.09.048
52. Yuan YF, Xia XH, Wu JB, et al. Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application. Electrochemistry Communications 2011; 13(10): 1123–1126. doi: 10.1016/j.elecom.2011.07.012
53. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science 2015; 8(3): 702–730. doi: 10.1039/C4EE03229B
54. Zhou H, Yang H, Yao S, et al. Synthesis of 3D printing materials and their electrochemical applications. Chinese Chemical Letters 2022; 33(8): 3681–3694. doi: 10.1016/j.cclet.2021.11.018
55. Zheng Y, Li Z, Xu J, et al. Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 2016; 20: 94–107. doi: 10.1016/j.nanoen.2015.11.038
56. Hussain I, Lee JM, Iqbal S, et al. Preserved crystal phase and morphology: electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications. Electrochimica Acta 2020; 340: 135953. doi: 10.1016/j.electacta.2020.135953
57. Singh AK, Sarkar D, Karmakar K, et al. High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes. ACS Applied Materials & Interfaces 2016; 8(32): 20786–20792. doi: 10.1021/acsami.6b05933
58. Jiang Y, Chen L, Zhang H, et al. Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chemical Engineering Journal 2016; 292: 1–12. doi: 10.1016/j.cej.2016.02.009
59. Zhang M, Fan H, Zhao N, et al. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chemical Engineering Journal 2018; 347: 291–300. doi: 10.1016/j.cej.2018.04.113
60. Deori K, Ujjain SK, Sharma RK, Deka S. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Applied Materials & Interfaces 2013; 5(21): 10665–10672. doi: 10.1021/am4027482
61. Yadav S, Yadav J, Kumar M, Saini K. Synthesis and characterization of nickel oxide/cobalt oxide nanocomposite for effective degradation of methylene blue and their comparative electrochemical study as electrode material for supercapacitor application. International Journal of Hydrogen Energy 2022; 47(99): 41684–41697. doi: 10.1016/j.ijhydene.2022.02.011
62. Wang J, Huang Y, Du X, et al. Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors. Chemical Engineering Journal 2023; 464: 142741. doi: 10.1016/j.cej.2023.142741
63. Kumar YA, Das HT, Guddeti PR, et al. Self-supported Co3O4@Mo-Co3O4 needle-like nanosheet heterostructured architectures of battery-type electrodes for high-performance asymmetric supercapacitors. Nanomaterials 2022; 12(14): 2330. doi: 10.3390/nano12142330
64. Tang C, Yin X, Gong H. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Applied Materials & Interfaces 2013; 5(21): 10574–10582. doi: 10.1021/am402436q
DOI: https://doi.org/10.59400/mea.v2i1.111
(101 Abstract Views, 67 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Samatha Kelathaya, Raghavendra Sagar
License URL: http://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.