Exposome analysis in toxicology: A comprehensive review
Abstract
Keywords
Full Text:
PDFReferences
1. Wild CP. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology, Biomarkers & Prevention 2005; 14(8): 1847–1850. doi: 10.1158/1055-9965.EPI-05-0456
2. Miller GW, Jones DP. The nature of nurture: Refining the definition of the exposome. Toxicological Sciences 2014; 137(1): 1–2. doi: 10.1093/toxsci/kft251
3. Rappaport SM, Smith MT. Environment and disease risks. Science 2010; 330(6003): 460–461. doi: 10.1126/science.1192603
4. Vlaanderen J, Moore LE, Smith MT, et al. Application of OMICS technologies in occupational and environmental health research; current status and projections. Occupational & Environmental Medicine 2010; 67(2): 136–143. doi: 10.1136/oem.2008.042788
5. Calafat AM. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals. International Journal of Hygiene and Environmental Health 2012; 215(2): 99–101. doi: 10.1016/j.ijheh.2011.08.014
6. Dennis KK, Auerbach SS, Balshaw DM, et al. The importance of the biological impact of exposure to the concept of the exposome. Environmental Health Perspectives 2016; 124(10): 1504–1510. doi: 10.1289/EHP140
7. Snyder EG, Watkins TH, Solomon PA, et al. The changing paradigm of air pollution monitoring. Environmental Science & Technology 2013; 47(20): 11369–11377. doi: 10.1021/es4022602
8. Nieuwenhuijsen MJ, Donaire-Gonzalez D, Foraster M, et al. Using personal sensors to assess the exposome and acute health effects. International Journal of Environmental Research and Public Health 2014; 11(8): 7805–7819. doi: 10.3390/ijerph110807805
9. Wieringa FP, Broers NJH, Kooman JP, et al. Wearable sensors: Can they benefit patients with chronic kidney disease? Expert Review of Medical Devices 2017; 14(7): 505–519. doi: 10.1080/17434440.2017.1342533
10. Patel CJ, Ioannidis JPA. Studying the elusive environment in large scale. Journal of the American Medical Association 2014; 311(21): 2173. doi: 10.1001/jama.2014.4129
11. Gudi-Mindermann H, White M, Roczen J, et al. Integrating the social environment with an equity perspective into the exposome paradigm: A new conceptual framework of the Social Exposome. Environmental Research 2023; 233: 116485. doi: 10.1016/j.envres.2023.116485
12. Vineis P, Chadeau-Hyam M, Gmuender H, et al. The exposome in practice: Design of the EXPOsOMICS project. International Journal of Hygiene and Environmental Health 2017; 220(2): 142–151. doi: 10.1016/j.ijheh.2016.08.001
13. Nieuwenhuijsen MJ, Kruize H, Gidlow C, et al. Positive health effects of the natural outdoor environment in typical populations in different regions in Europe (PHENOTYPE): A study programme protocol. British Medical Journal 2014; 4(4): e004951. doi: 10.1136/bmjopen-2014-004951
14. Dennis KK, Marder E, Balshaw DM, et al. Biomonitoring in the era of the exposome. Environmental Health Perspectives 2017; 125(4): 502–510. doi: 10.1289/EHP474
15. Schymanski EL, Singer HP, Longrée P, et al. Strategies to characterize polar organic contamination in wastewater: Exploring the capability of high resolution mass spectrometry. Environmental Science & Technology 2014; 48(3): 1811–1818. doi: 10.1021/es4044374
16. Vineis P, Husgafvel-Pursiainen K. Air pollution and cancer: Biomarker studies in human populations. Carcinogenesis 2005; 26(11): 1846–1855. doi: 10.1093/carcin/bgi216
17. Escher BI, Hackermüller J, Polte T, et al. From the exposome to mechanistic understanding of chemical-induced adverse effects. Environment International 2017; 99: 97–106. doi: 10.1016/j.envint.2016.11.029
18. Dennis KK, Auerbach SS, Balshaw DM, et al. The importance of the biological impact of exposure to the concept of the exposome. Environmental Health Perspectives 2016; 124(10): 1504–1510. doi: 10.1289/EHP140
19. Go YM, Walker DI, Liang Y, et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicological Sciences 2015; 148(2): 531–543. doi: 10.1093/toxsci/kfv198
20. Vrijheid M, Slama R, Robinson O, et al. The human early-life exposome (HELIX): Project rationale and design. Environmental Health Perspectives 2014; 122(6): 535–544. doi: 10.1289/ehp.1307204
21. Patel CJ, Ioannidis JPA. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. Journal of Epidemiology & Community Health 2014; 68(11): 1096–1100. doi: 10.1136/jech-2014-204195
22. Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives 2011; 119(6): 866–872. doi: 10.1289/ehp.1002839
23. Shonkoff SB, Morello-Frosch R, Pastor M, Sadd J. The climate gap: Environmental health and equity implications of climate change and mitigation policies in California—A review of the literature. Climatic Change 2011; 109(S1): 485–503. doi: 10.1007/s10584-011-0310-7
24. Turner MC, Nieuwenhuijsen M, Anderson K, et al. Assessing the exposome with external measures: Commentary on the state of the science and research recommendations. Annual Review of Public Health 2017; 38(1): 215–239. doi: 10.1146/annurev-publhealth-082516-012802
25. Lynch J, Smith GD. A life course approach to chronic disease epidemiology. Annual Review of Public Health 2005; 26(1): 1–35. doi: 10.1146/annurev.publhealth.26.021304.144505
26. Morello-Frosch R, Shenassa ED. The environmental “riskscape” and social inequality: Implications for explaining maternal and child health disparities. Environmental Health Perspectives 2006; 114(8): 1150–1153. doi: 10.1289/ehp.8930
DOI: https://doi.org/10.59400/jts.v1i1.267
(89 Abstract Views, 21 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Utsav Anand Mani, Husain Abbas, Mukesh Kumar, Haider Abbasz, Sharique Alam, Devansh Goyal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.