Conservation laws, exact solutions and nonlinear dispersion: A lie symmetry approach
Abstract
Keywords
Full Text:
PDFReferences
1. Wang K. Solitary wave dynamics of the local fractional Bogoyavlensky-Konopelchenko model. Fractals 2023; 31(5): 2350054. doi: 10.1142/S0218348X23500548
2. Rosenau P, Hyman JM. Compactons: Solitons with finite wavelength. Physical Review Letters 1993; 70(5): 564–567. doi: 10.1103/PhysRevLett.70.564
3. Bruzón MS, Gandarias ML. Traveling wave solutions of the K(m, n) equation with generalized evolution. Mathematical Methods in the Applied Sciences 2018; 41(15): 5851–5857. doi: 10.1002/mma.1339
4. Bruzón MS, Gandarias ML, González GA, Hansen R. The K(m, n) equation with generalized evolution term studied by symmetry reductions and qualitative analysis. Applied Mathematics and Computation 2012; 218(20): 10094–10105. doi: 10.1016/j.amc.2012.03.084
5. Anco SC, Bluman G. Direct construction method for conservation laws of partial differential equations part II: General treatment. European Journal of Applied Mathematics 2002; 13(5): 567–585. doi: 10.1017/S0956792501004661
6. Naz R. Conservation laws for some compacton equations using the multiplier approach. Applied Mathematics Letters 2012; 25(3): 257–261. doi: 10.1016/j.aml.2011.08.019
7. Rosenau P, Oron A. On compactons induced by a non-convex convection. Communications in Nonlinear Science and Numerical Simulation 2014; 19(5): 1329–1337. doi: 10.1016/j.cnsns.2013.09.028
8. Gandarias ML. Conservation laws for some equations that admit compacton solutions induced by a non-convex convection. Journal of Mathematical Analysis and Applications 2015; 430(2): 695–702. doi: 10.1016/j.jmaa.2015.04.071
9. Anco SC, Bluman G. Direct construction of conservation laws from field equations. Physical Review Letters 1997; 78(15): 2869–2873. doi: 10.1103/PhysRevLett.78.2869
10. Ibragimov NH. A new conservation theorem. Journal of Mathematical Analysis and Applications 2007; 333(1): 311–328. doi: 10.1016/j.jmaa.2006.10.078
11. Ibragimov NH. Quasi-self-adjoint differential equations. Archives of ALGA 2007; 4: 55–60.
12. Gandarias ML. Weak self-adjoint differential equations. Journal of Physics A: Mathematical and Theoretical 2011; 44(26): 262001. doi: 10.1088/1751-8113/44/26/262001
13. Ibragimov NH. Nonlinear self-adjointness and conservation laws. Journal of Physics A: Mathematical and Theoretical 2011; 44: 432002. doi: 10.1088/1751-8113/44/43/432002
14. Bruzón MS, Gandarias ML, Ibragimov NH. Self-adjoint sub-classes of generalized thin film equations. Journal of Mathematical Analysis and Applications 2009; 357(1): 307–313. doi: 10.1016/j.jmaa.2009.04.028
15. Gandarias ML, Bruzón MS. Some conservation laws for a forced KDV equation. Nonlinear Analysis: Real World Applications 2012; 13(6): 2692–2700. doi: 10.1016/j.nonrwa.2012.03.013
16. Freire IL. Self-adjoint sub-classes of third and fourth-order evolution equations. Applied Mathematics and Computation 2011; 217(22): 9467–9473. doi: 10.1016/j.amc.2011.04.041
17. Freire IL, Sampaio JCS. On the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models. Communications in Nonlinear Science and Numerical Simulation 2014; 19(2): 350–360. doi: 10.1016/j.cnsns.2013.06.010
18. Ibragimov N, Torrisi M, Tracinà R. Quasi self-adjoint nonlinear wave equations. Journal of Physics A: Mathematical and Theoretical 2010; 43(44): 442001. doi: 10.1088/1751-8113/43/44/442001
19. Ibragimov NH, Torrisi M, Tracina R. Self-adjointness and conservation laws of a generalized burgers equation. Journal of Physics A: Mathematical and Theoretical 2011; 44: 145201. doi: 10.1088/1751-8113/44/14/145201
20. Gandarias ML. Weak self-adjointness and conservation laws for a porous medium equation. Communications in Nonlinear Science and Numerical Simulation 2012; 17(6): 2342–2349. doi: 10.1016/j.cnsns.2011.10.020
21. Gandarias ML, Redondo M, Bruzón MS. Some weak self-adjoint Hamilton—Jacobi—Bellman equations arising in financial mathematics. Nonlinear Analysis: Real World Applications 2012; 13(1): 340–347. doi: 10.1016/j.nonrwa.2011.07.041
22. Gandarias ML. Nonlinear self-adjointness through differential substitutions. Communications in Nonlinear Science and Numerical Simulation 2014; 19(10): 3523–3528. doi: 10.1016/j.cnsns.2014.02.013
23. Torrisi M, Tracinà R. Quasi self-adjointness of a class of third order nonlinear dispersive equations. Nonlinear Analysis: Real World Applications 2013; 14(3): 1496–1502. doi: 10.1016/j.nonrwa.2012.10.013
24. Deiakeh RA, Arqub OA, Smadi MA, Momani S. Lie symmetry analysis, explicit solutions, and conservation laws of the time-fractional Fisher equation in two-dimensional space. Journal of Ocean Engineering and Science 2022; 7(4): 345–352. doi: 10.1016/j.joes.2021.09.005
25. Arqub OA, Hayat T, Alhodaly M. Analysis of lie symmetry, explicit series solutions, and conservation laws for the nonlinear time-fractional phi-four equation in two-dimensional space. International Journal of Applied and Computational Mathematics 2022; 8(3): 145. doi: 10.1007/s40819-022-01334-0
26. Aal MA, Arqub OA. Lie analysis and laws of conservation for the two-dimensional model of Newell—Whitehead—Segel regarding the Riemann operator fractional scheme in a time-independent variable. Arab Journal of Basic and Applied Sciences 2023; 30(1): 55–67. doi: 10.1080/25765299.2023.2172840
27. Euler N, Euler M. On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies. Journal of Nonlinear Mathematical Physics 2009; 16(4): 489–504. doi: 10.1142/S1402925109000509
28. Anco SA. Conservation laws of scaling-invariant field equations. Journal of Physics A: Mathematical and General 2003; 36: 8623. doi: 10.1088/0305-4470/36/32/305
DOI: https://doi.org/10.59400/jam.v1i1.95
(142 Abstract Views, 56 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Adnan Shamaoon, Zartab Ali, Qaisar Maqbool
License URL: https://creativecommons.org/licenses/by-nc/ 4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.