Enhancing handwritten numeric string recognition through incremental support vector machines
Abstract
Handwritten digit recognition systems are integral to diverse applications such as postal services, banking, and document processing in our digitally-driven society. This research addresses the challenges posed by evolving datasets and dynamic scenarios in handwritten digit recognition by proposing an approach based on incremental support vector machines (ISVM). ISVM is an extension of traditional support vector machines (SVM) designed to handle scenarios where new data points become available over time. The dataset includes handwritten images (numbers “0” to “6”) and trials introducing new classes (“7”, “8”, and “9”). Evaluation utilizes k-fold cross-validation for robustness. Digital image processing involves converting images into numeric data using the histogram method. The result showed the positive outcomes of using ISVM in handwritten digit recognition, emphasizing its adaptability to incremental learning and its ability to maintain robust performance in the face of evolving datasets, which is crucial for real-world applications.
Keywords
Full Text:
PDFReferences
1. Athoillah M, Putri RK. Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. 2019; 4(2): 99-106. doi: 10.22219/kinetik.v4i2.724
2. Memon J, Sami M, Khan RA, et al. Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR). IEEE Access. 2020, 8: 142642-142668. doi: 10.1109/access.2020.3012542
3. Diaz M, Ferrer MA, Impedovo D, et al. A Perspective Analysis of Handwritten Signature Technology. ACM Computing Surveys. 2019, 51(6): 1-39. doi: 10.1145/3274658
4. Athoillah M. K-Nearest Neighbor for Recognize Handwritten Arabic Character. Jurnal Matematika “MANTIK.” 2019, 5(2): 83-89. doi: 10.15642/mantik.2019.5.2.83-89
5. Yogesh Y, Ghantasala GSP, Priya A. Artificial Intelligence Based Handwriting Digit Recognition (HDR) - A Technical Review. In: Proceedings of the 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT); 17–18 March 2023; Dehradun, India. pp. 275–278. doi: 10.1109/dicct56244.2023.10110186
6. Khobragade RN, Koli NA, Lanjewar VT. Challenges in recognition of online and off-line compound handwritten characters: A review. In: Zhang YD, Mandal J, So-In C, Thakur N (editors). Smart Trends in Computing and Communications. Springer; 2020. Volume 165. pp. 375–383. doi: 10.1007/978-981-15-0077-0_38
7. Liu X, Lian Y. Handwriting identification: Challenges and solutions. Journal of Forensic Science and Medicine. 2018; 4(3): 167-173. doi: 10.4103/jfsm.jfsm_81_17
8. Yang Q, Gu Y, Wu D. Survey of incremental learning. In: Proceedings of the 2019 Chinese Control And Decision Conference (CCDC); 3–5 June 2019; Nanchang, China. pp. 399–404. doi: 10.1109/ccdc.2019.8832774
9. Nayak J, Naik B, Behera HS. A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. International Journal of Database Theory and Application. 2015, 8(1): 169-186. doi: 10.14257/ijdta.2015.8.1.18
10. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. 2020, 408: 189-215. doi: 10.1016/j.neucom.2019.10.118
11. Shams M, A. Amira, Z. Wael. Arabic Handwritten Character Recognition based on Convolution Neural Networks and Support Vector Machine. International Journal of Advanced Computer Science and Applications. 2020, 11(8). doi: 10.14569/ijacsa.2020.0110819
12. Rajnoha M, Burget R, Dutta MK. Offline handwritten text recognition using support vector machines. In: Proceedings of the 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN); 2–3 February 2017; Noida, India. pp. 132–136. doi: 10.1109/spin.2017.8049930
13. Katiyar G. Off-Line Handwritten Character Recognition System Using Support Vector Machine. American Journal of Neural Networks and Applications. 2017, 3(2): 22. doi: 10.11648/j.ajnna.20170302.12
14. Athoillah M, Imah EM, Irawan MI. Multi kernel-based classification method with incremental learning for image retrieval. In: Proceedings of the International Conference on Mathematics: Pure, Applied and Computation, ICoMPAC 2015; 3 December 2015; Surabaya, Indonesia.
15. Athoillah M. Pengenalan Wajah Menggunakan SVM Multi Kernel dengan Pembelajaran yang Bertambah. Jurnal Online Informatika. 2018, 2(2): 84. doi: 10.15575/join.v2i2.109
16. Peryanto A, Yudhana A, Umar R. Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing. 2020, 4(1): 45-51. doi: 10.30871/jaic.v4i1.2017
17. Xu Y, Goodacre R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. Journal of Analysis and Testing. 2018, 2(3): 249-262. doi: 10.1007/s41664-018-0068-2
18. Zhang Y, Yang Y. Cross-validation for selecting a model selection procedure. Journal of Econometrics. 2015, 187(1): 95-112. doi: 10.1016/j.jeconom.2015.02.006
19. Braga-Neto U. Fundamentals of Pattern Recognition and Machine Learning. Springer International Publishing, 2020. doi: 10.1007/978-3-030-27656-0
20. Ye Q, Doermann D. Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015, 37(7): 1480-1500. doi: 10.1109/tpami.2014.2366765
21. Ajam A, Forghani M, AlyanNezhadi MM, et al. Content-based image retrieval using color difference histogram in image textures. In: Proceedings of the 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS); 18–19 December 2019; Shahrood, Iran. pp. 1–6. doi: 10.1109/icspis48872.2019.9066062
22. Somvanshi M, Chavan P, Tambade S, et al. A review of machine learning techniques using decision tree and support vector machine. In: Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA); 12–13 August 2016; Pune, India. pp. 1–7. doi: 10.1109/iccubea.2016.7860040
23. Chefrour A. Incremental supervised learning: algorithms and applications in pattern recognition. Evolutionary Intelligence. 2019, 12(2): 97-112. doi: 10.1007/s12065-019-00203-y
24. Pisner DA, Schnyer DM. Support vector machine. Machine Learning: Methods and Applications to Brain Disorders. Academic Press; 2020. pp. 101–121. doi: 10.1016/b978-0-12-815739-8.00006-7
25. Campbell C, Ying Y. Learning with Support Vector Machines. Springer Nature; 2022.
26. Zhang YC, Hu GS, Zhu FF, et al. A new incremental learning support vector machine. In: Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence; 7–8 November 2009; NW Washington, DC, United States. doi: 10.1109/aici.2009.342
27. Juba B, Le HS. Precision-Recall versus Accuracy and the Role of Large Data Sets. Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 4039-4048. doi: 10.1609/aaai.v33i01.33014039
DOI: https://doi.org/10.59400/jam.v2i1.373
(76 Abstract Views, 53 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rani Kurnia Putri, Muhammad Athoillah
This work is licensed under a Creative Commons Attribution 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.