Open Journal Systems

A comprehensive review article on fractional models involving ecology and eco-epidemiology

Sanjukta Pramanik, Krishna Pada Das, Partha Karmakar, Seema Sarkar Mondal

Abstract

This paper deals with the various definitions involved in the very old yet novel topic called fractional calculus. This survey intends to report some of the major works carried out in the arena of fractional calculus that took place since 2010. Fractional calculus is a prominent topic for research within the discipline of applied mathematics doe to its usefulness in solving problems in several different branches of science, engineering, medicine, finance, economics and the likes. With the various definitions involved in this field, we explore the various models taken into consideration to study the effect and impact of fractional calculus to understand how the dynamics of such models change.


Keywords

Caputo fractional derivative; Mittag-Leffler function; paradox of enrichment; Feigenbaums constants; generalized Hyers-Ulam stability

Full Text:

PDF

References

1. Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st ed. Wiley-Interscience; 1993.

2. Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation 2011; 16(3): 1140–1153. doi: 10.1016/j.cnsns.2010.05.027

3. Herrmann R. Fractional Calculus: An Introduction for Physicists. World Scientific Publishing Company; 2011.

4. Hadamard J. Essays on the study of functions given by Taylor’s development (French). Journal De Mathmatiques Pures Et Appliques 1982; 8: 101–186.

5. Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal International 1967; 13(5): 529–539. doi: 10.1111/j.1365-246x.1967.tb02303.x

6. Algahtani OJJ. Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model. Chaos, Solitons & Fractals 2016; 89: 552–559. doi: 10.1016/j.chaos.2016.03.026

7. Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Science 2016; 20(2): 763–769. doi: 10.2298/tsci160111018A

8. Qian D, Li C, Agarwal RP, Wong PJY. Stability analysis of fractional differential system with Riemann-Liouville derivative. Mathematical and Computer Modelling 52(5–6): 862–874. doi: 10.1016/j.mcm.2010.05.016

9. Wei Z, Li Q, Che J. Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative. Journal of Mathematical Analysis and Applications 2010; 367(1): 260–272. doi: 10.1016/j.jmaa.2010.01.023

10. El-Sayed AMA. On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications. Alexandria Journal of Mathematics 2010; 1(1): 1–10.

11. Chen W, Ye L, Sun H. Fractional diffusion equations by the Kansa method. Computers & Mathematics with Application 2010; 59(5): 1614–1620. doi: 10.1016/j.camwa.2009.08.004

12. Li Y, Chen Y, Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers & Mathematics with Applications 2010; 59(5): 1810–1821. doi: 10.1016/j.camwa.2009.08.019

13. Abbas S, Banerjee M, Momani S. Dynamical analysis of fractional-order modified logistic model. Computers & Mathematics with Applications 2011; 62(3): 1098–1104. doi: 10.1016/j.camwa.2011.03.072

14. Xiao M. Stability analysis and Hopf-type bifurcation of a fractional order Hindmarsh-Rose neuronal model. In: Wang J, Yen GG, Polycarpou MM (editors). Advances in Neural Networks—ISNN 2012, Proceedings of the 9th International Symposium on Neural Networks; 11–14 July 2012; Shenyang, China. Springer; 2012. Volume 7367, pp. 217–224.

15. Abdelouahab MS, Hamri NE, Wang J. Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dynamics 2012; 69(1–2): 275–284. doi: 10.1007/s11071-011-0263-4

16. Delavari H, Baleanu D, Sadati J. Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dynamics 2012; 67(4): 2433–2439. doi: 10.1007/s11071-011-0157-5

17. Rana S, Bhattacharya S, Pal J, et al. Paradox of enrichment: A fractional differential approach with memory. Physica A: Statistical Mechanics and its Applications 2013; 392(17): 3610–3621. doi: 10.1016/j.physa.2013.03.061

18. Agarwal RP, El-Sayed AMA, Salman SM. Fractional-order Chuas system: Discretization, bifurcation and chaos. Advances in Difference Equations 2013; 2013(1): 1–13. doi: 10.1186/1687-1847-2013-320

19. Javidi M, Nyamoradi N. Dynamic analysis of a fractional order prey-predator interaction with harvesting. Applied Mathematical Modelling 2013; 37(20–21): 8946–8956. doi: 10.1016/j.apm.2013.04.024

20. Choi SK, Kang B, Koo N. Stability for Caputo fractional differential systems. Abstract and Applied Analysis 2014; 2014: 1–6. doi: 10.1155/2014/631419

21. Zhou XF, Hu LG, Liu S, Jiang W. Stability criterion for a class of nonlinear fractional differential systems. Applied Mathematics Letters 2014; 28: 25–29. doi: 10.1016/j.aml.2013.09.007

22. Elsadany AA, Matouk AE. Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. Journal of Applied Mathematics and Computing 2015; 49(1–2): 269–283. doi: 10.1007/s12190-014-0838-6

23. Matouk AE, Elsadany AA, Ahmed E, Agiza HN. Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization. Communications in Nonlinear Science and Numerical Simulation 2015; 27(1–3): 153–167. doi: 10.1016/j.cnsns.2015.03.004

24. Rihan FA, Lakshmanan S, Hashish AH, et al. Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dynamics 2015; 80(1–2): 777–789. doi: 10.1007/s11071-015-1905-8

25. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications 2015; 1(2): 73–85. doi: 10.12785/pfda/010201

26. Losada J, Nieto JJ. Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications 2015; 1(2): 87–92. doi: 10.12785/pfda/010202

27. Ghaziani RK, Alidousti J, Eshkaftaki AB. Stability and dynamics of a fractional order Leslie-Gower prey-predator model. Applied Mathematical Modelling 2016; 40(3): 2075–2086. doi: 10.1016/j.apm.2015.09.014

28. Ji G, Ge Q, Xu J. Dynamic behaviors of a fractional order two-species cooperative systems with harvesting. Chaos, Solitons & Fractals 2016; 92: 51–55. doi: 10.1016/j.chaos.2016.09.014

29. Matouk AE, Elsadany AA. Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model. Nonlinear Dynamics 2016; 85(3): 1597–1612. doi: 10.1007/s11071-016-2781-6

30. Song P, Zhao H, Zhang X. Dynamic analysis of a fractional order delayed predator-prey system with harvesting. Theory in Biosciences 2016; 135(1–2): 59–72. doi: 10.1007/s12064-016-0223-0

31. Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons & Fractals 2016; 89: 447–454. doi: 10.1016/j.chaos.2016.02.012

32. Li Z, Chen D, Ma M, et al. Feigenbaum’s constants in reverse bifurcation of fractional-order Rössler system. Chaos, Solitons & Fractals 2017; 99: 116–123. doi: 10.1016/j.chaos.2017.03.014

33. Khajanchi S.Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function. Applied Mathematics and Computation 2017; 302: 122–143. doi: 10.1016/j.amc.2017.01.019

34. Nosrati K, Shafiee M. Dynamic analysis of fractional-order singular Holling type-II predator-prey system. Applied Mathematics and Computation 2017; 313: 159–179. doi: 10.1016/j.amc.2017.05.067

35. Owolabi KM, Atangana A. Spatiotemporal dynamics of fractional preda-torprey system with stage structure for the predator. International Journal of Applied and Computational Mathematics 2017; 3(S1): 903–924. doi: 10.1007/s40819-017-0389-2

36. Deshpande AS, Daftardar-Gejji V, Sukale YV. On Hopf bifurcation in fractional dynamical systems. Chaos, Solitons & Fractals 2017; 98: 189–198. doi: 10.1016/j.chaos.2017.03.034

37. Zou Y, He G. On the uniqueness of solutions for a class of fractional differential equations. Applied Mathematics Letters 2017; 74: 68–73. doi: 10.1016/j.aml.2017.05.011

38. Abdeljawad T. A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. Journal of Inequalities and Applications 2017; 2017(1). doi: 10.1186/s13660-017-1400-5

39. Liu S, Wu X, Zhang YJ, Yang R. Asymptotical stability of Riemann-Liouville fractional neutral systems. Applied Mathematics Letters 2017; 69: 168–173. doi: 10.1016/j.aml.2017.02.016

40. Li M, Wang J. Finite time stability of fractional delay differential equations. Applied Mathematics Letters 2017; 64: 170–176. doi: 10.1016/j.aml.2016.09.004

41. Satriyantara R, Suryanto A, Hidayat N. Numerical solution of a fractional-order predator-prey model with prey refuge and additional food for predator. The Journal of Experimental Life Science 2018; 8(1): 66–70. doi: 10.21776/ub.jels.2018.008.01.11

42. Moustafa M, Mohd MH, Ismail AI, Abdullah FA. Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge. Chaos, Solitons & Fractals 2018; 109: 1–13. doi: 10.1016/j.chaos.2018.02.008

43. Baisad K, Moonchai S. Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response. Advances in Difference Equations 2018; 2018(1): 1–20. doi: 10.1186/s13662-018-1535-9

44. Li HL, Muhammadhaji A, Zhang L, Teng Z. Stability analysis of a fractional-order predator-prey model incorporating a constant prey refuge and feedback control. Advances in Difference Equations 2018; 2018(1): 1–12. doi: 10.1186/s13662-018-1776-7

45. Liang C, Wang J, O’Regan D. Representation of a solution for a fractional linear system with pure delay. Applied Mathematics Letters 2018; 77: 72–78. doi: 10.1016/j.aml.2017.09.015

46. Alidousti J, Ghahfarokhi MM. Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey. Applied Mathematical Modelling 2019; 72: 385–402. doi: 10.1016/j.apm.2019.03.029

47. Moustafa M, Mohd MH, Ismail AI, Abdullah FA. Stage structure and refuge effects in the dynamical analysis of a fractional order Rosenzweig-MacArthur prey-predator model. Progress in Fractional Differentiation & Applications 2019; 5(1): 49–64. doi: 10.18576/pfda/050106

48. Suryanto A, Darti IS, Panigoro H, Kilicman A. A fractional-order predator-prey model with ratio-dependent functional response and linear harvesting. Mathematics 2019; 7(11): 1100. doi: 10.3390/math7111100

49. Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29, 3-22.

50. Wang Z, Xie Y, Lu J, Li Y. Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition. Applied Mathematics and Computation 2019; 347: 360–369. doi: 10.1016/j.amc.2018.11.016

51. Xie Y, Lu J, Wang Z. Stability analysis of a fractional-order diffused prey-predator model with prey refuges. Physica A: Statistical Mechanics and its Applications 2019; 526: 120773. doi: 10.1016/j.physa.2019.04.009

52. Panja P. Dynamics of a fractional order predator-prey model with intraguild predation. International Journal of Modelling and Simulation 2019; 39(4): 256–268. doi: 10.1080/02286203.2019.1611311

53. Panigoro HS, Suryanto A, Kusumawinahyu WM, Darti I. Continuous threshold harvesting in a gause-type predator-prey model with fractional-order. AIP Conference Proceedings 2020; 2264(1): 040001. doi: 10.1063/5.0023513

54. Mondal R, Kesh D, Mukherjee D. Dynamical analysis of a fractional order Rosenzweig-MacArthur model incorporating herbivore induced plant volatile. Chinese Journal of Physics 2020; 68: 258–269. doi: 10.1016/j.cjph.2020.07.019

55. Panigoro HS, Suryanto A, Kusumawinahyu WM, Darti I. A Rosenzweig-MacArthur model with continuous threshold harvesting in predator involving fractional derivatives with power law and Mittag-Leffler kernel. Axioms 2020; 9(4): 122. doi: 10.3390/axioms9040122

56. Baleanu D, Jajarmi A, Hajipour M. On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel. Nonlinear Dynamics 2018; 94(1): 397–414. doi: 10.1007/s11071-018-4367-y

57. Ghanbari B, Günerhan H, Srivastava HM. An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model. Chaos, Solitons & Fractals 2020; 138: 109910. doi: 10.1016/j.chaos.2020.109910

58. Yildiz TA, Jajarmi A, Yildiz B, Baleanu D. New aspects of time fractional optimal control problems within operators with nonsingular kernel. American Institute of Mathematical Sciences 2020; 13(3): 407–428. doi: 10.3934/dcdss.2020023

59. Singh J, Kumar D, Baleanu D. A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel. International Journal of Biomathematics 2020; 13(2): 2050010. doi: 10.1142/s1793524520500102

60. Mohammadi H, Baleanu D, Etemad S, Rezapour S. Criteria for existence of solutions for a Liouville-Caputo boundary value problem via generalized Gronwall’s inequality. Journal of Inequalities and Applications 2021; 2021: 1–19. doi: 10.1186/s13660-021-02562-6

61. ul Rehman, A., Singh, R., Abdeljawad, T., Okyere, E., & Guran, L. (2021). Modeling, analysis and numerical solution to malaria fractional model with temporary immunity and relapse. Advances in Difference Equations, 2021(1), 390. doi: 10.1186/s13662-021-03532-4

62. Bantaojai T, Borisut P. Implicit fractional differential equation with nonlocal fractional integral conditions. Thai Journal of Mathematics 2021; 19(3): 993–1003.

63. Rahmi E, Darti I, Suryanto A, et al. Stability analysis of a fractional-order Leslie-Gower model with Allee effect in predator. Journal of Physics: Conference Series 2021; 1821(1): 012051. doi: 10.1088/1742-6596/1821/1/012051

64. Ghosh U, Pal S, Banerjee M. Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis. Chaos, Solitons & Fractals 2021; 143: 110531. doi: 10.1016/j.chaos.2020.110531

65. Panigoro HS, Rahmi E, Achmad N, et al. A discrete-time fractional-order Rosenzweig-Macarthur predator-prey model involving prey refuge. Communications in Mathematical Biology and Neuroscience 2021; 2021(77): 1–19. doi: 10.28919/cmbn/6586

66. Barman D, Roy J, Alrabaiah H, et al. Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos, Solitons & Fractals 2021; 142: 110420. doi: 10.1016/j.chaos.2020.110420

67. Yousef FB, Yousef A, Maji C. Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality. Chaos, Solitons & Fractals 2021; 145: 110711. doi: 10.1016/j.chaos.2021.110711

68. Panigoro HS, Suryanto A, Kusumawinahyu WM, Darti I. Global stability of a fractional-order Gause-type predator-prey model with threshold harvesting policy in predator. Communications in Mathematical Biology and Neuroscience 2021; 2021(63). doi: 10.28919/cmbn/6118

69. Rahmi E, Darti I, Suryanto A, Trisilowati. A modified Leslie-Gower model incorporating Beddington-DeAngelis functional response, double Allee effect and memory effect. Fractal and Fractional 2021; 5(3): 84. doi: 10.3390/fractalfract5030084

70. Abbas S, Mahto L, Favini A, Hafayed M. Dynamical study of fractional model of allelopathic stimulatory phytoplankton species. Differential Equations and Dynamical Systems 2014; 24(3): 267–280. doi: 10.1007/s12591-014-0219-5

71. Nugraheni K, Trisilowati T, Suryanto A. Dynamics of a fractional order eco-epidemiological model. Journal of Tropical Life Science 2017; 7(3): 243–250. doi: 10.11594/jtls.07.03.09

72. Mondal S, Lahiri A, Bairagi N. Analysis of a fractional order eco-epidemiological model with prey infection and type 2 functional response. Mathematical Methods in Applied Sciences 2017; 40(18): 6776–6789. doi: 10.1002/mma.4490

73. Moustafa M, Mohd MH, Ismail AI, Abdullah FA. Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population. Advances in Difference Equations 2020; 2020: 1–24. doi: 10.1186/s13662-020-2522-5

74. Kumar A, Alshahrani B, Yakout HA, et al. Dy-namical study on three-species population eco-epidemiological model with fractional order derivatives. Results in Physics 2021; 24: 104074. doi: 10.1016/j.rinp.2021.104074

75. Mondal S, Cao X, Bairagi N. Study of a discretized fractional-order eco-epidemiological model with prey infection. Fractional Differential Calculus 2020; 10(1): 109–128. doi: 10.7153/fdc-2020-10-07

76. Qi H, Zhao W. Stability and bifurcation control analysis of a delayed fractional-order eco-epidemiological system. The European Physical Journal Plus 2022; 137(8): 934. doi: 10.1140/epjp/s13360-022-03154-z

77. Ghosh U, Thirthar AA, Mondal B, Majumdar P. Effect of fear, treatment, and hunting cooperation on an eco-epidemiological model: Memory effect in terms of fractional derivative. Iranian Journal of Science and Technology, Transactions A: Science 2022; 46(6): 1541–1554. doi: 10.1007/s40995-022-01371-w

78. Moustafa M, Abdullah FA, Shafie S, Amirsom NA. Global stability of a fractional-order eco-epidemiological model with infected predator: theoretical analysis. Communications in Mathematical Biology and Neuroscience 2023; 2023: 56.

79. Rahmi E, Darti I, Suryanto A, Trisilowati T. A fractional-order eco-epidemiological Leslie-Gower model with double Allee effect and disease in predator. International Journal of Differential Equations 2023; 2023: 1–24. doi: 10.1155/2023/5030729


DOI: https://doi.org/10.59400/jam.v1i4.236
(65 Abstract Views, 78 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sanjukta Pramanik, Krishna Pada Das, Partha Karmakar, Seema Sarkar Mondal

License URL: http://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License.