The synergistic effect of the multiple parameters of vibro-impact nonlinear energy sink
Abstract
This article studies the dynamics and efficiency of a vibro-impact damper (single-sided vibro-impact nonlinear energy sink—SSVI NES) depending on the exciting force parameters. The damper is coupled with a linear oscillator—the primary structure. It is shown that the damper is quite effective in a wide range of the exciting force amplitude and in the range of its frequency, which are higher than the resonant frequency; damper efficiency in these regions is fairly stable. The dynamics of the vibro-impact system “primary structure—SSVI NES” is rich and complex, which, however, does not impair the damper efficiency. In complex oscillatory regimes, the damper makes bilateral impacts: it hits both an obstacle and directly against the primary structure, which actually turns a single-sided NES into a double‐sided one. The optimization procedure and the choice of optimal damper parameters play a very important role in damper design. Optimizing multiple damper parameters instead of three shows a synergistic effect and provides better results.
Keywords
Full Text:
PDFReferences
1. Gutierrez Soto M, Adeli H. Tuned mass dampers. Archives of Computational Methods in Engineering 2013; 20(4): 419–431. doi: 10.1007/s11831-013-9091-7
2. Rahimi F, Aghayari R, Samali B. Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civil Engineering Journal 2020; 6(8): 1622–1651. doi: 10.28991/cej-2020-03091571
3. Ding H, Chen LQ. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics 2020; 100(4): 3061–3107. doi: 10.1007/s11071-020-05724-1
4. Saeed AS, Abdul Nasar R, AL-Shudeifat MA. A review on nonlinear energy sinks: Designs, analysis and applications of impact and rotary types. Nonlinear Dynamics 2022; 111(1): 1–37. doi: 10.1007/s11071-022-08094-y
5. Vakakis AF. Passive nonlinear targeted energy transfer. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2018; 376(2127): 20170132. doi: 10.1098/rsta.2017.0132
6. Lu Z, Wang Z, Masri SF, Lu X. Particle impact dampers: Past, present, and future. Structural Control and Health Monitoring 2017; 25(1): e2058. doi: 10.1002/stc.2058
7. Ibrahim RA. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration 2018; 314(3–5): 371–452. doi: 10.1016/j.jsv.2008.01.014
8. Lee YS, Vakakis AF, Bergman LA, et al. Passive non-linear targeted energy transfer and its applications to vibration absorption: A review. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2008; 222(2): 77–134. doi: 10.1243/14644193jmbd118
9. Wang J, Wierschem NE, Spencer BF, Lu X. Track nonlinear energy sink for rapid response reduction in building structures. Journal of Engineering Mechanics 2015; 141(1): 04014104. doi: 10.1061/(ASCE)EM.1943-7889.0000824
10. Wierschem NE. Targeted Energy Transfer Using Nonlinear Energy Sinks for the Attenuation of Transient Loads on Building Structures [PhD thesis]. University of Illinois at Urbana-Champaign; 2014.
11. Li T. Study of Nonlinear Targeted Energy Transfer by Vibro-Impact [PhD thesis]. National Institute of Applied Sciences of Toulouse; 2016.
12. Qui D. Theoretical and Experimental Study of Tuned Nonlinear Energy Sink Application to Passive Vibration Control [PhD thesis]. National Institute of Applied Sciences of Toulouse; 2018.
13. Youssef B, Leine RI. A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode. Journal of Sound and Vibration 2021; 501: 116043. doi: 10.1016/j.jsv.2021.116043
14. Bergeot B, Bellizzi S, Berger S. Dynamic behavior analysis of a mechanical system with two unstable modes coupled to a single nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation 2021; 95: 105623. doi: 10.1016/j.cnsns.2020.105623
15. Saeed AS, AL-Shudeifat MA, Cantwell WJ, Vakakis AF. Two-dimensional nonlinear energy sink for effective passive seismic mitigation. Communications in Nonlinear Science and Numerical Simulation 2021; 99: 105787. doi: 10.1016/j.cnsns.2021.105787
16. Luo J, Wierschem NE, Hubbard SA, et al. Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Engineering Structures 2014; 77: 34–48. doi: 10.1016/j.engstruct.2014.07.020
17. Qiu D, Seguy S, Paredes M. Design criteria for optimally tuned vibro-impact nonlinear energy sink. Journal of Sound and Vibration 2019; 442: 497–513. doi: 10.1016/j.jsv.2018.11.021
18. Gourc E, Seguy S, Michon G, et al. Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. Journal of Sound and Vibration 2015; 355: 392–406. doi: 10.1016/j.jsv.2015.06.025
19. Wierschem NE, Hubbard SA, Luo J, et al. Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. Journal of Sound and Vibration 2017; 389: 52–72. doi: 10.1016/j.jsv.2016.11.003
20. Javidialesaadi A, Wierschem NE. Optimal design of rotational inertial double tuned mass dampers under random excitation. Engineering Structures 2018; 165: 412–421. doi: 10.1016/j.engstruct.2018.03.033
21. Wu Z, Seguy S, Paredes M. Basic constraints for design optimization of cubic and bistable nonlinear energy sink. Journal of Vibration and Acoustics 2022; 144(2): 021003. doi: 10.1115/1.4051548
22. Li T, Seguy S, Berlioz A. Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dynamics 2016; 87(4): 2415–2433. doi: 10.1007/s11071-016-3200-8
23. Li W, Wierschem NE, Li X, et al. Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dynamics 2020; 100(2): 951–971. doi: 10.1007/s11071-020-05571-0
24. AL-Shudeifat MA, Saeed AS. Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs. Meccanica 2020; 56(4): 735–752. doi: 10.1007/s11012-020-01193-3
25. Farid M. Dynamics of a hybrid cubic vibro-impact oscillator and nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation 2023; 117: 106978. doi: 10.1016/j.cnsns.2022.106978
26. Feudo SL, Job S, Cavallo M, et al. Finite contact duration modeling of a vibro-impact nonlinear energy sink to protect a civil engineering frame structure against seismic events. Engineering Structures 2022; 259: 114137. doi: 10.1016/j.engstruct.2022.114137
27. Theurich T, Krack M. Experimental validation of impact energy scattering as concept for mitigating resonant vibrations. Journal of Structural Dynamics 2023; (2): 1–23. doi: 10.25518/2684-6500.126
28. Bazhenov VA, Pogorelova OS, Postnikova TG. Comparison of two impact simulation methods used for nonlinear vibro-impact systems with rigid and soft impacts. Journal of Nonlinear Dynamics 2013; 2013: 1–12. doi: 10.1155/2013/485676
29. Bazhenov V, Pogorelova O, Postnikova T. Crisis-induced intermittency and other nonlinear dynamics phenomena in vibro-impact system with soft impact. In: Altenbach H, Amabili M, MikhlinYV (editors). Nonlinear Mechanics of Complex Structures: From Theory to Engineering Applications. Springer; 2021. pp.185–203.
30. Foale S, Bishop SR. Bifurcations in impact oscillations. Nonlinear Dynamics 1994; 6(3): 285–299. doi: 10.1007/BF00053387
31. Johnson KL. Contact Mechanics. Cambridge University Press; 1985.
32. Costa D, Kuske R, Yurchenko D. Qualitative changes in bifurcation structure for soft vs hard impact models of a vibro-impact energy harvester. Chaos: An Interdisciplinary Journal of Nonlinear Science 2022; 32(10): 103120. doi: 10.1063/5.0101050
33. Lizunov P, Pogorelova O, Postnikova T. Choice of the model for vibro-impact nonlinear energy sink. Strength of Materials and Theory of Structures 2022; (108): 63–76. doi: 10.32347/2410-2547.2022.108.63-76
34. Lizunov P, Pogorelova O, Postnikova T. Dynamics of primary structure coupled with single sided vibro-impact nonlinear energy sink. Strength of Materials and Theory of Structures 2022; (109): 103–113. doi: 10.32347/2410-2547.2022.109.20-29
35. Lizunov P, Pogorelova O, Postnikova T. Vibro-impact damper dynamics depending on system parameters. Research Square 2023. 1–20. doi: 10.21203/rs.3.rs-2786639/v1
36. Bazhenov VA, Pogorelova OS, Postnikova TG. Transient chaos in platform-vibrator with shock. Strength of Materials and Theory of Structures 2021; (106): 103–123. doi: 10.32347/2410-2547.2021.106.22-40
37. Szaksz B, Stepan G. Transient chaotic behavior of fuzzy controlled polishing processes. Chaos: An Interdisciplinary Journal of Nonlinear Science 2022; 32(9): 093112. doi: 10.1063/5.0101257
38. Lamarque CH, Janin O. Modal analysis of mechanical systems with impact non-linearities: Limitations to a modal superposition. Journal of Sound and Vibration 2000; 235(4): 567–609. doi: 10.1006/jsvi.1999.2932
DOI: https://doi.org/10.59400/jam.v1i3.199
(78 Abstract Views, 54 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Petro Lizunov, Olga Pogorelova, Tetiana Postnikova
License URL: http://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.