Numerical investigation of heat and mass transfer of variable viscosity Casson nanofluid flow through a microchannel filled with a porous medium
Abstract
Keywords
Full Text:
PDFReferences
1. Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. Wiley & Sons; 2011.
2. Holman JP. Heat Transfer, 10th ed. McGraw-Hill Education; 2010.
3. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Letters 1981; 2(5): 126–129. doi: 10.1109/EDL.1981.25367
4. Saleel CA, Algahtani A, Badruddin IA, et al. Pressure-driven electro-osmotic flow and mass transport in constricted mixing micro-channels. Journal of Applied Fluid Mechanics 2019; 13(2): 429–441. doi: 10.29252/jafm.13.02.30146
5. Reddy KV, Makinde OD, Reddy MD. Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric microchannel. Indian Journal of Physics 2018; 92(11): 1439–1448. doi: 10.1007/s12648-018-1209-1
6. Kmiotek M, Kucab-Pietal A. Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences. Technical Sciences 2018; 66(2): 111–118. doi: 10.24425/119064
7. Dewan A, Srivastava P. A review of heat transfer enhancement through flow disruption in a microchannel. Journal of Thermal Science 2015; 24(3): 203–214. doi: 10.1007/s11630-015-0775-1
8. Kumar R, Islam M, Hasan MM. A review of experimental investigations on heat transfer characteristics of single phase liquid flow in microchannels. International Journal of Advanced Mechanical Engineering 2014; 4(1): 115–120.
9. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition 1995; 66: 99–105.
10. Subramanian KRV, Rao TN, Balakrishnan A. Nanofluids and Their Engineering Applications. CRC Press; 2020.
11. Reddy KV, Reddy MG, Makinde OD. Thermophoresis and brownian motion effects on magnetohydrodynamics electro-osmotic jeffrey nanofluid peristaltic flow in asymmetric rotating microchannel. Journal of Nanofluids 2019; 8(2): 349–358. doi: 10.1166/jon.2019.1581
12. Niazi MDK, Xu H. Modelling two-layer nanofluid flow in a microchannel with electro-osmotic effects by means of the Buongiorno’s model. Applied Mathematics and Mechanics 2020; 41(1): 83–104. doi: 10.1007/s10483-020-2558-7
13. Ahadi A, Antoun S, Saghir MZ, Swift J. Computational fluid dynamic evaluation of heat transfer enhancement in microchannel solar collectors sustained by alumina nanofluid. Energy Storage 2019; 1(2): e37. doi: 10.1002/est2.37
14. Delisle CS, Welsford CA, Saghir MZ. Forced convection study with microporous channels and nanofluid: Experimental and numerical. Journal of Thermal Analysis and Calorimetry 2019; 140(6): 1205–1214. doi: 10.1007/s10973-019-09175-8
15. Sharaf OZ, Al-Khateeb AN, Kyritsis DC, Abu-Nada E. Numerical investigation of nanofluid particle migration and convective heat transfer in microchannels using an Eulerian-Lagrangian approach. Journal of Fluid Mechanics 2019; 878: 62–97. doi: 10.1017/jfm.2019.606
16. Shahrestani MI, Maleki A, Shadloo MS, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry 2020; 12(1): 120. doi: 10.3390/sym12010120
17. Davood T, Mohammad M, Omid Ali A, et al. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. Journal of Thermal Analysis and Calorimetry 2018; 135(4): 145–159. doi: 10.1007/s10973-018-7254-3
18. Pouya B, Davood T, Reza BD, Masoud A. Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. International Communications in Heat and Mass Transfer 2019; 108: 104285. doi: 10.1016/j.icheatmasstransfer.2019.104285
19. Chamkha AJ, Azzi A, Menni Y. Transport of nanofluid through porous media—A review. Special Topics & Reviews in Porous Media: An International Journal 2018; 9(4): 1–16. doi: 10.1615/SpecialTopicsRevPorousMedia.2018027168
20. Chamkha AJ, Ameur H, Menni Y. Nanofluids advances through heat exchangers. Heat Transfer 2020; 1–29. doi: 10.1002/htj.2182
21. Algehyne EA, Wakif A, Rasool G, et al. Significance of Darcy-Forchheimer and Lorentz forces on radiative alumina-water nanofluid flows over a slippery curved geometry under multiple convective constraints: A renovated Buongiorno’s model with validated thermophysical correlations. Waves in Random and Complex Media 2022. doi: 10.1080/17455030.2022.2074570
22. Rashad, AM, Chamkha AJ, Mansour MA, Armaghani T. MHD combined convection flow of Cu-water nanofluid through a lid-driven saturated porous enclosure with entropy generation and partial slip effects. Journal of Thermal Analysis and Calorimetry 2019; 132: 1291–1306. doi: 10.1007/s10973-018-7889-0
23. Maneengam A, Laidoudi H, Abderrahmane A, et al. Entropy generation in 2D lid-driven porous container with the presence of obstacles of different shapes and under the influences of buoyancy and lorentz forces. Nanomaterials 2022; 12(13): 2206. doi: 10.3390/nano12132206
24. Rasool G, Shah NA, El-Zahar ER, Wakif A. Numerical investigation of EMHD nanofluid flows over a convectively heated Riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws. Waves in Random and Complex Media 2022. doi: 10.1080/17455030.2022.2074571
25. Makinde OD, Lakshmi DV, Venkateswarlu M. Heat generation and thermal radiation influences on the steady hydromagnetic flow through a vertical micro-porouschannel with suction/injection. Journal of Nanofluids 2019; 8(5): 1–10. doi: 10.1166/jon.2019.1647
26. Joshi N, Pandey AK, Upreti H, Kumar M. Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher-order chemical reaction. Heat Transfer 2020; 50(4): 3661–3682. doi: 10.1002/htj.22046
27. Raza J, Mebarek-Oudina F, Ali Lund L. The flow of magnetised convective Casson liquid via a porous channel with shrinking and stationary walls. Pramana 2022; 96: 229. doi: 10.1007/s12043-022-02465-1
28. Mahmoud J, Ali Rabienataj DA, Davood T, Omidali A. Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method. Physica A: Statistical Mechanics and its Applications 2018; 509: 316–335. doi: 10.1016/j.physa.2018.06.011
29. Arasteh H, Mashayekhi R, Toghraie D, et al. Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. Journal of Thermal Analysis and Calorimetry 2019; 137(3): 1045–1058. doi: 10.1007/s10973-019-08007-z
30. Arasteh H, Mashayekhi R, Ghaneifar M, et al. Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. Journal of Thermal Analysis and Calorimetry 2019; 141(5): 1669–1685. doi: 10.1007/s10973-019-08870-w
31. Mehmood R, Nayak MK, Akbar NS, Makinde OD. Effects of thermal-diffusion and diffusion-thermoon oblique stagnation point flow of couple stress Casson fluid over a stretched horizontal riga plate with higher order chemical reaction. Journal of Nanofluids 2019; 8(1): 94–102. doi: 10.1166/jon.2019.1560
32. Thammanna GT, Kumar KG, Gireesha BJ, et al. Magnetohydrodynamic analysis on stretched flow of couple stress Casson fluid with chemical reaction. Results in Physics 2017; 7: 4104–4124. doi: 10.1016/j.rinp.2017.10.016
33. Mahanthesh B, Makinde OD, Gireesha BJ, et al. Two-phase flow of dusty Casson fluid with Cattaneo-Christov heat flux and heat source past a cone, wedge and plate. Defect and Diffusion Forum 2018; 387: 625–639. doi: 10.4028/www.scientific.net/DDF.387.625
34. Jakeer S, Reddy PBA, Reddy SRR, Basha HT. Entropy generation and Melting heat transfer on the Ferrohydrodynamic flow of Fe_3 O_4-Ag/ blood hybrid nanofluid with Cattaneo-Christov heat flux model. Waves in Random and Complex Media 2023; 1–24. doi: 10.1080/17455030.2022.2164808
35. Patil MB, Shobha KC, Bhattacharyya S, Said Z. Soret and Dufour effects in the flow of Casson nanofluid in a vertical channel with thermal radiation: Entropy analysis. Journal of Thermal Analysis and Calorimetry 2023; 148(3): 1–11. doi: 10.1007/s10973-023-11962-3
36. Casson N. A flow equation for pigment-oil suspensions of the printing ink type. In: Mill CC (editor). Rheology of Disperse Systems. Pergamon Press; 1959. pp. 84–104.
37. Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer. Springer New York; 1984.
38. Roja A, Gireeesha BJ, Nagaraja B. Irreversibility investigation of Casson fluid flow in an inclined channel subject to a Darcy-Forchheimer porous medium: A numerical study. Applied Mathematics and Mechanics 2021; 42: 95–108. doi: 10.1007/s10483-021-2681-9
39. Mahmoudi Y, Hooman K, Vafai K. Convective Heat Transfer in Porous Media. CRC Press; 2020.
40. Rundora L, Makinde OD. Buoyance effects on unsteady reactive variable properties fluid flow in a channel filled with a porous medium. Journal of Porous Media 2018; 21(8): 721–737. doi: 10.1615/JPorMedia.2018015707
41. Makinde OD, Khan ZH, Ahmad R, et al. Unsteady MHD flow in a porous channel with thermal radiation and heat source/sink. International Journal of Applied and Computational Mathematics 2019; 5: 59. doi: 10.1007/s40819-019-0644-9
42. Kasaeian A, Daneshazarian R, Mahian O, et al. Nanofluid flow and heat transfer in porous media: A review of the latest developments. International Journal of Heat and Mass Transfer 2017; 107: 778–791. doi: 10.1016/j.ijheatmasstransfer.2016.11.074
43. Menni Y, Chamkha AJ, Azzi A. Nanofluid transport in porous media: A review. Special Topics & Reviews in Porous Media: An International Journal 2019; 10(1): 49–64. doi: 10.1615/SpecialTopicsRevPorousMedia.2018027168
44. Nayak MK, Pandey VS, Shaw S, et al. Thermo-fluidic significance of non-Newtonian fluid with hybrid nanostructures. Case Studies in Thermal Engineering 2021; 26: 101092. doi: 10.1016/j.csite.2021.101092
DOI: https://doi.org/10.59400/jam.v1i3.194
(100 Abstract Views, 88 PDF Downloads)
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Lemi Guta Enyadene, Ebba Hindebu Rikitu, Adugna Fita Gabissa
License URL: http://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.