Open Journal Systems

On efficiencies, emissions, and the colors of hydrogen—An update

Rudolf Holze

Abstract

Compared with electricity, more precisely electric energy, as a secondary form of energy, hydrogen as an energy carrier, an energy storage material, and a chemical reagent are of growing importance. This change is driven mostly by ecological reasons with hydrogen replacing fossil fuels and materials finally reducing the emission of greenhouse gases, it is also relevant because of its conceivable use as an energy carrier in transportation. This update starts with a brief collection of common definitions and terminology and moves across a critical assessment of common misunderstandings towards current and future uses of hydrogen on to future perspectives with a particular focus on efficiency.


Keywords

hydrogen economy; energy efficiency; energy carrier; electromobility; fuel cells; energy storage

Full Text:

PDF

References

1. Ajanovic A, Sayer M, Haas R. The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy. 2022; 47(57): 24136–24154. doi: 10.1016/j.ijhydene.2022.02.094

2. Kusoglu A. The many colors of hydrogen. The Electrochemical Society Interface. 2021; 30(4): 44–48. doi: 10.1149/2.f12214if

3. Wu Y, Holze R. Are there green hydrogen or zero-emission vehicles? (German). Bunsen-Magazin. 2020; 22(3): 50–53.

4. Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews. 2017; 67: 597–611. doi: 10.1016/j.rser.2016.09.044

5. Newborough M, Cooley G. Developments in the global hydrogen market: Electrolyser deployment rationale and renewable hydrogen strategies and policies. Fuel Cells Bulletin. 2020; 2020(10): 16–22. doi: 10.1016/s1464-2859(20)30486-7

6. Dawood F, Anda M, Shafiullah GM. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy. 2020; 45(7): 3847–3869. doi: 10.1016/j.ijhydene.2019.12.059

7. Newborough M, Cooley G. Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin. 2020; 2020(11): 16–22. doi: 10.1016/s1464-2859(20)30546-0

8. El-Shafie M, Kambara S, Hayakawa Y. Hydrogen production technologies overview. Journal of Power and Energy Engineering. 2019; 07(01): 107–154. doi: 10.4236/jpee.2019.71007

9. Maus W (editor). Future Fuels: Energy Transition in Transport as a Global Climate Goal (ATZ/MTZ Specialist Book) (German). Springer Vieweg; 2019.

10. Bockris JOM. A hydrogen economy. Science. 1972; 176(40-41): 1323–1323. doi: 10.1126/science.176.4041.1323

11. Beckmann G. Hydrogen—An energy source (German)? Nachrichten aus Chemie, Technik und Laboratorium. 1991; 39(5): 503–508. doi: 10.1002/nadc.19910390505

12. Bockris JOM. The hydrogen economy. Environmental Chemistry. 1977; 549–582. doi: 10.1007/978-1-4615-6921-3_17

13. Bockris JOM. The hydrogen economy: Its history. International Journal of Hydrogen Energy. 2013; 38(6): 2579–2588. doi: 10.1016/j.ijhydene.2012.12.026

14. Midilli A, Kucuk H, Topal ME, et al. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy. 2021; 46(50): 25385–25412. doi: 10.1016/j.ijhydene.2021.05.088

15. Neugebauer R (editor). Hydrogen Technologies (German). Springer Vieweg; 2022.

16. David M, Ocampo-Martinez C. Current status of water electrolysis for energy storage. Comprehensive Renewable Energy. 2022; 533–552. doi: 10.1016/b978-0-12-819727-1.00039-x

17. Dincer I, Al Zahrani AA. Electrolyzers. Comprehensive Energy Systems. 2018; 4: 985–1025. doi: 10.1016/B978-0-12-809597-3.00442-9

18. Amireh SF, Heineman NN, Vermeulen P, et al. Impact of power supply fluctuation and part load operation on the efficiency of alkaline water electrolysis. Journal of Power Sources. 2023; 560: 232629. doi: 10.1016/j.jpowsour.2023.232629

19. Brauns J, Turek T. Alkaline water electrolysis powered by renewable energy: A review. Processes. 2020; 8(2): 248. doi: 10.3390/pr8020248

20. Xia Y, Cheng H, He H, et al. Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources. Communications Engineering. 2023; 2(1). doi: 10.1038/s44172-023-00070-7

21. Wu Y, Holze R. Electrochemical Energy Conversion and Storage. Wiley-VCH; 2022.

22. Ahn J, Holze R. Bifunctional electrodes for an integrated water-electrolysis and hydrogen-oxygen fuel cell with a solid polymer electrolyte. Journal of Applied Electrochemistry. 1992; 22(12): 1167–1174. doi: 10.1007/bf01297419

23. Holze R, Ahn J. Advances in the use of perfluorinated cation exchange membranes in integrated water electrolysis and hydrogen/oxygen fuel cell systems. Journal of Membrane Science. 1992; 73(1): 87–97. doi: 10.1016/0376-7388(92)80188-p

24. Carmo M, Fritz DL, Mergel J, et al. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy. 2013; 38(12): 4901–4934. doi: 10.1016/j.ijhydene.2013.01.151

25. Pellow MA, Emmott CJM, Barnhart CJ, et al. Hydrogen or batteries for grid storage? A net energy analysis. Energy & Environmental Science. 2015; 8(7): 1938–1952. doi: 10.1039/c4ee04041d

26. Schalenbach M, Tjarks G, Carmo M, et al. Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. Journal of The Electrochemical Society. 2016; 163(11): F3197–F3208. doi: 10.1149/2.0271611jes

27. Ehlers JC, Feidenhans’l AA, Therkildsen KT, et al. Affordable green hydrogen from alkaline water electrolysis: Key research needs from an industrial perspective. ACS Energy Letters. 2023; 8(3): 1502–1509. doi: 10.1021/acsenergylett.2c02897

28. Zayat B, Mitra D, Narayanan SR. Inexpensive and efficient alkaline water electrolyzer with robust steel-based electrodes. Journal of The Electrochemical Society. 2020; 167(11): 114513. doi: 10.1149/1945-7111/aba792

29. Chatenet M, Pollet BG, Dekel DR, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews. 2022; 51(11): 4583–4762. doi: 10.1039/d0cs01079k

30. Hodges A, Hoang AL, Tsekouras G, et al. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-28953-x

31. Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews. 2018; 81: 1690–1704. doi: 10.1016/j.rser.2017.05.258

32. Steinfeld A. Solar thermochemical production of hydrogen—A review. Solar Energy. 2005; 78: 603–615. doi: 10.1016/j.solener.2003.12.012

33. Kovač A, Paranos M, Marciuš D. Hydrogen in energy transition: A review. International Journal of Hydrogen Energy. 2021; 46: 10016–10035. doi: 10.1016/j.ijhydene.2020.11.256

34. Knobloch F, Hanssen SV, Lam A, et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability. 2020; 3: 437–447. doi: 10.1038/s41893-020-0488-7

35. Woo J, Choi HA. Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment. 2017; 51: 340–350. doi: 10.1016/j.trd.2017.01.005

36. Buchal C, Karl HD, Sinn HW. Coal engines, wind engines and diesel engines: What does the CO2 balance show? (German). IFO Schnelldienst. 2019; 72(8): 40–54.

37. Energiewende A, Industry A, Torcuato F, Tella D. 12 Insights on Hydrogen—Argentina Edition. Agora; 2023.

38. Brauner G. System Efficiency for Renewable Power Generation. Springer Vieweg; 2018.

39. Ausfelder F, Wagemann K. Power-to-fuels: E-fuels as an important option for a climate-friendly mobility of the future. Chemie Ingenieur Technik. 2020; 92: 21–30. doi: 10.1002/cite.201900180.

40. JEC—Joint Research Centre-Eucar-concawe collaboration, well-to-wheels analysis of future automotive fuels and powertrains in the european context, well-to-tank (wtt) report—appendix 2, version 4a, 2014. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/wtt_appendix_2_v4a.pdf (accessed on 2 June 2023).

41. Tagesspiegel. Server-Fehler. Available online: https://www.tagesspiegel.de/berlin/archiv/2019/12/02%E2%80%9D (accessed on 17 December 2023).

42. Zellner R. Too much CO2 from traffic: Is electromobility the solution (German)? Nachrichten aus der Chemie. 2019; 67(3): 26–31. doi: 10.1002/nadc.20194083851

43. Sinn HW. Are electric vehicles really so climate friendly? Available online: https://www.theguardian.com/environment/2019/nov/25/are-electric-vehicles-really-so-climate-friendly (accessed on 2 June 2023).

44. Sterner M, Stadler I (editors). Energy Storage—Needs, Technologies, Integration (German), 2nd ed. Springer Vieweg; 2017.

45. Leitner W, Klankermayer J, Pischinger S, et al. Advanced biofuels and beyond: Chemistry solutions for propulsion and production. Angewandte Chemie International Edition. 2017; 56(20): 5412–5452. doi: 10.1002/anie.201607257

46. Vetere A, Schrader W. Analysis of biofuels (German). GIT-Labor. 2020; 64(3): 26–29.

47. Ramirez J, Brown R, Rainey T. A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies. 2015; 8(7): 6765–6794. doi: 10.3390/en8076765

48. Lü J, Sheahan C, Fu P. Metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science. 2011; 4(7): 2451. doi: 10.1039/c0ee00593b

49. Heinemann C, Kasten P, Bauknecht D, et al. The importance of electricity-based substances for climate protection in Germany (German). Available online: https://www.oeko.de/fileadmin/oekodoc/PtX-Hintergrundpapier.pdf (accessed on 17 December 2023).

50. Brauner G. System Efficiency for Renewable Power Generation (German). Springer Vieweg; 2018.

51. Agora Energiewende and Frontier Economics Ltd. The future cost of electricity-based synthetic fuels. Available online: https://www.agora-verkehrswende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels/ (accessed on 17 December 2023).

52. Klell M, Eichlseder H, Trattner A (editors). Hydrogen in Vehicle Technology. Springer Vieweg; 2018.


DOI: https://doi.org/10.59400/esc.v1i1.304
(29 Abstract Views, 11 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rudolf Holze

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License.