
Journal of  AppliedMath 2023; 1(2): 88.
Original Research Article

1

On a first order linear singular differential equation in the space K’
Abdourahman Haman Adji1,*, Shankishvili Lamara Dmitrievna2

1 Department of Mathematics and Computer Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundéré 454,

Cameroon
2 Department of Mathematics, Georgian Technical University, Tbilisi 0171, Georgia

* Corresponding author: Abdourahman Haman Adji, abdoulshehou@yahoo.fr

ABSTRACT: We propose in this work to describe all the generalized-

function solutions of the non-homogeneous first-order linear singular

differential equation with 𝐴, 𝐵 two real numbers, 𝑠 and 𝑝 ∈ ℕ, 𝑛 ≥ 1, 𝑞 ∈𝑍+, in the space of generalized functions K’. In the case of a second right-

hand side consisting of an s-order derivative of the Dirac-delta function, we

have completely investigated the considered equation when we look for

the solution in the form of 𝑦(𝑥) = ∑ 𝐶𝑘𝑁𝑘=0 𝛿(𝑘)(𝑥)  with the unknown

coefficients 𝐶𝑘  which we have determined case by case, taking into

account the relationship between the parameters inside. On the basis of

what has been done, we focus our present research to apply the principle

of superposition of the solutions that is conducting us to the awaited result

when we also maintain the classical solutions of the homogeneous

equation which remains the same.
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1. Introduction

Solving differential equations is already a great step achieved to understand some physical

phenomena described by the constructed models of real life sometimes. For that aim, we use different

theories and methods when we look for solutions of differential equations to reach the solutions and, this

also is well known and illustrated in some books reflected in scientific researches done by scientists.

Among many others, we can cite the method of substituting the variable, numerical methods, and

analytical methods when solving some kind of differential equations.

We can stipulate in a very simple way that, the principle of superposition of solutions of a differential

equation is the sum of two or more solutions of the considered equation which should be exactly, also

once again, a solution. We recall that, from the general theory of differential equations, the expression of

the following form ∑ cibi(t)y(i)𝑛i=0 (t) = f(t), where the variables coefficients cibi(t), i = 0, 1, … , 𝑛, f(t)
are continuous real functions with b𝑛(t) ≠ 0, ci arbitrary constants is called an n order linear differential

equation. When we set a problem as follows: solve a differential equation of the form ∑ cibi(t)y(i)𝑛i=0 (t) =∑ fj𝑚j=0 (t) where fj(t) (for every j= 0, . . . , 𝑚) are well-known functions then, it is clear that in practice one

should solve one by one the differential equation ∑ cibi(t)y(i)𝑛i=0 (t) = fj(t)  (for every j= 0, . . . , 𝑚).
Supposing that each partial equation has a solution defined by yj(t) (for every j= 0, . . . , 𝑚) then, we know

that the general solution of the investigated initial equation should be ∑ yj(t)𝑚j=0 .
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However, let us mention that sometimes solving even a first-order linear differential equation in 

some specific cases maybe not be easy. Many scientific papers have recently been devoted to considerable 

interest in problems concerning the existence of solutions to differential and functional differential 

equations (FDE) in various known spaces of generalized functions. 

 As we notice, a lot of serious areas in theoretical and mathematical physics, theory of partial 

differential equations, quantum electrodynamics, operational calculus, and functional analysis widely 

use the methods of the distributions theory. 

One can clearly understand and underline the importance of the very rich scientific theory of 

generalized functions nowadays used in the development of several areas of mathematics and also 

globally in sciences in general. For example, we note that the Dirac delta function plays a fundamental 

role in all this theory and, among many others; the works of Mikio Sato have glimpsed new paths in 

algebraic analysis in the so-called theory of hyperfunctions widely investigated. 

Recent scientific research on generalized functions in noncommutative algebras, where the Dirac 

operator is the evocative idea of this new formulation to arrive at the solution of the problem has been 

studied by D. Alfonso Santiesteban et al.[1–5]. 

This work is devoted to the question of the investigation of the solvency in the space of generalized 

functions K’, a linear differential equation of the first-order with singularity and a finite linear 

combination of Dirac-delta functions and its derivatives in the second-hand side. Namely, we consider 

the equation of the following type. 𝐴𝑥𝑝𝑦′(𝑥) + 𝐵𝑥𝑞𝑦(𝑥) =∑𝛿(𝑠)(𝑥)𝑛
𝑠=0  (1) 

where A, B are real numbers and, 𝑝 ∈ ℕ, 𝑛 ≥ 1, 𝑞, 𝑠 ∈ ℕ⋃{0}. 
As we mentioned in our previous research among others, we can note similar investigations recently 

done by various authors such as Liangprom and Nonlaopon[6], Jhanthanam et al.[7] and, we completely 

investigated the same question when we have only one term in the right-hand side denoted 𝛿(𝑠)(𝑥). For 

full details one can refer to article [8]. The same ideas when seeking the general solutions of the considered 

equation remains as done, using now more precisely in this work the principle of superposition of the 

solutions to reach the goal. 

From the resolution of the simple differential equation 𝑥𝑛𝑦(𝑥) = 𝛿(𝑠)(𝑥) (2) 

whose distributional solution function is defined by the expression 

𝑦(𝑥) = 𝛿(𝑠)(𝑥)𝑥𝑛 = (−1)𝑛𝑠! 𝛿(𝑛+𝑠)(𝑥)(𝑠 + 𝑛)! +∑𝑐𝑘𝛿(𝑘−1)(𝑥)𝑛
𝑘=1  (3) 

where 𝑐𝑘 are arbitrary constants, we understand the issue and the challenge that looms on the horizon 

with regard to the resolution of an equation of general order m, i.e., of the type 𝑥𝑛𝑦(𝑚)(𝑥) = 𝛿(𝑠)(𝑥), 
whose distributional solution will naturally be obtained and defined by a rather enormous formula just 

in the case mentioned. This is therefore a reason for seeking to generalize the resolution of certain types 

of equations thus evoked and related to our work. The technicality and the mastery of the techniques of 



Journal of  AppliedMath 2023; 1(2): 88. 

3 

derivations and integration in the sense of the distributions are taken into account in the realization of 

this work. 

Therefore, within this research, we give the complete description of the solutions of Equation (1) in 

the space K’ applying the principle of superposition of solutions (in the case of solvency). 

We organize the paper as follows: first of all, in section 2, we present the necessary concepts and 

notions from the theory of linear differential equations and also well-known distributional theory. 

Sections 3 and 4 devoted to the main results obtained in this work begin, separately with the degenerate 

case when 𝐴𝐵 = 0 where we describe the solutions of Equation (1), centered at zero. Next, it is 

constructed the general solution as the union of generalized and classical solutions. In section 5 dedicated 

to the non-degenerate case 𝐴𝐵 ≠ 0, we describe the classical solutions of the Equation (1) in ℝ∗. Section 

6 titled Conclusion is closing this paper.    

2. Preliminaries 

For the execution of this research, it is needed some important reminders related to the notions of 

the Fourier transform, its properties, and generalized function centered at a given point. For full details 

on these facts, we refer to[9–12]all that K is denoted the space of test functions, of indefinitely differentiable 

and identically zero outside a bounded set on ℝ1 functions and 𝐾′ the space of generalized functions on 𝐾. 

For function 𝜑(𝑡) ∈ 𝐾, through 𝐹𝜑 = 𝜑̂, we denoted the Fourier transform defined by the equation (𝐹𝜑)(𝑥) = 𝜑̂(𝑥) = ∫ 𝜑(𝑡)𝑒𝑖𝑥𝑡𝑑𝑡+∞
−∞  (4) 

The Fourier transform of the generalized function 𝑓 ∈ 𝐾′ we define by the rule (Parseval equality): (𝑓, 𝜑̂) = 2𝜋(𝑓, 𝜑) (5) 

For the Fourier transform of generalized function, many properties are conserved as those taking 

place for Fourier transform for test functions, and particularly equations relationship between 

differentiability and decrease meant. From them in particular it follows that: 𝐹[𝛿(𝑠)(𝑡)] = (−𝑖𝑥)𝑠 , 𝑠 ∈ ℕ⋃{0} (6) 

We need the following assertions, which can be found along with their proofs in books on the theory 

of generalized functions. For example, refer to[11,13–15]. 

Theorem 1. If 𝑓, 𝑔 ∈ 𝐾′ and 𝑓′ = 𝑔′ then 𝑓 − 𝑔 = 𝑐. 
Theorem 2. Let 𝐴(𝑥) ∈ 𝐶∞(ℝ1). The differential equations 𝑦′ = 𝐴(𝑥)𝑦 in the space 𝐾′ does not admit other 

solutions which are not classical solutions. 

Definition 1. Generalized function 𝑓 ∈ 𝐾′ is called centered at the point 𝑥0, if (𝑓, 𝜑(𝑥)) = 0 for all 𝜑(𝑥) ∈ 𝐾 

such 𝑥0 ∈ 𝑆𝑢𝑝𝑝𝜑. 
Theorem 3. Let 𝑓 ∈ 𝐾′ centered at zero. Then there exist 𝑚 ∈ ℕ⋃{0} such that: 𝑓(𝑥) =∑𝑐𝑗𝛿(𝑗)(𝑥)𝑚

𝑗=0  (7) 

where 𝑐𝑗  are some constants. 

Lemma 1. Let 𝛽(𝑥) ∈ 𝐶∞(ℝ1). Then it holds the equation 
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𝛽(𝑥)𝛿(𝑗)(𝑥) =∑(−1)𝑗𝐶𝑙𝑗𝛽𝑖(0)𝑙
𝑗=0 𝛿(𝑙−𝑗)(𝑥). (8) 

 As for the proof of the Lemma 1 as well as all the details relating to it, we can refer to[16] 

As a consequence from Lemma 1 when  𝛽(𝑥) = 𝑥𝑘 , we obtain the following assertion. 

Lemma 2. Let 𝑠 ∈ ℕ⋃{0}, Then 𝑥𝑘𝛿(𝑠)(𝑥) = { 0, 𝑖𝑓 𝑠 < 𝑘(−1)𝑘𝑠!(𝑠 − 𝑘)! 𝛿(𝑠−𝑘)(𝑥), 𝑖𝑓 𝑠 ≥ 𝑘. (9) 

Sometimes, we need in our investigation the following expression 
𝑔(𝑠)(𝑥)𝑥𝑛 . We will understand this 

expression in the sense of the following definition. 

Definition 2. The quotient 
𝛿(𝑠)(𝑥)𝑥𝑛  is called a generalized function 𝑦(𝑥) ∈ 𝐾′ which satisfy in the space 𝐾′ the 

equality 𝑥𝑛𝑦(𝑥) = 𝛿(𝑠)(𝑥) when it is realized the following: (𝑥𝑛𝑦(𝑥), 𝜑(𝑥)) = (𝛿(𝑠)(𝑥), 𝜑(𝑥)) , 𝜑 ∈ 𝐾. (10) 

Let us from Lemma 2 and Definition 2 deduce the following equation for the computation of the 

generalized function defined by the expression: 
𝛿(𝑠)(𝑥)𝑥𝑛 . 

Lemma 3. Let 𝑛 ∈ ℕ, 𝑠 ∈ ℕ⋃{0}. It holds the following equation. 𝛿(𝑠)(𝑥)𝑥𝑛 = (−1)𝑛𝑠! 𝛿(𝑛+𝑠)(𝑥)(𝑠 + 𝑛)! +∑ 𝑐𝑘𝛿(𝑘−1)(𝑥)𝑛
𝑘=1  (11) 

Proof. Let us use the Definition 2 and apply the Fourier transform to both sides of the equality 𝑥𝑛𝑦(𝑥) = 𝛿(𝑠)(𝑥) with consideration that (𝑖𝑥)𝑛𝑦(𝑥)̂ = 𝑦(𝑥)(𝜀).̂  Finally we have 𝑦̂𝑛(𝜀) = (𝑖𝑥)𝑛𝑦(𝑥)̂ =𝑖𝑛𝛿(𝑠)(𝑥)̂ = 𝑖𝑛(−𝑖𝜀)𝑠. From the previous we reach 𝑦̂(𝜀) = 𝑃𝑛−1(𝜀) + (−1)𝑛𝑠!(𝑠+𝑛)! (−𝑖𝜀)𝑠+𝑛 where 𝑃𝑛−1(𝜀) is 

a polynomial with arbitrary coefficients. Applying the inverse Fourier transform with respect to the 
Equation (6) we reach the needed result and arrive to the Equation (11). So that consequently the 

lemma is proved. □ 

Remark 1. We underline that in the result of the «quotient» of the generalized function 𝛿(𝑠)(𝑥) by 𝑥𝑛  because of the 

“union” of singularity, it is not only increasing the order of the derivative of delta function, but it arises some arbitrary 
depending of 𝑛. 
3. The degenerate case 

First of all let us consider at the beginning of this investigation Equation (1) in the case we called 

degenerate case, when it is realized the condition: 𝐴𝐵 = 0 (12) 

This situation is almost simple and leads us to obtain completed results as consequence of Lemma 

3. 

Theorem 4. Let 𝑞, 𝑠 ∈ ℕ⋃{0} , 𝑛 ≥ 1. The general solution of equation 𝐵𝑥𝑞𝑦(𝑥) =∑𝛿(𝑠)(𝑥)𝑛
𝑠=0  (13) 
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has the following form 𝑦(𝑥) =∑ (−1)𝑞𝑠!𝐵(𝑠 + 𝑞)! 𝛿(𝑠+𝑞)(𝑥)𝑛
𝑠=0 +∑𝑐𝑘𝛿(𝑘−1)(𝑥)𝑞

𝑘=1  (14) 

where 𝑐𝑘  (𝑘 = 1,… , 𝑞) are arbitrary constants. Let state a clear formalism useful here and further. We set ∑ 𝛿(𝑘)(𝑥)𝑛
𝑘=𝑚 = 0, if 𝑛 < 𝑚 (15) 

In another way, we can see that the Theorem 4 is just a reformulation of the Lemma 3. 

Next, we move to the following theorem. 

Theorem 5. Let 𝑝 ∈ ℕ, 𝑠 ∈ ℕ⋃{0}, 𝑛 ≥ 1. The general solution of the equation 𝐴𝑥𝑝𝑦′(𝑥) =∑𝛿(𝑠)(𝑥)𝑛
𝑠=0  (16) 

has the following form defined by: 𝑦(𝑥) =∑ (−1)𝑝𝑠!𝐴(𝑠 + 𝑝)! 𝛿(𝑠+𝑝−1)(𝑥)𝑛
𝑠=0 +∑𝑐𝑘+1𝛿(𝑘−1)(𝑥)𝑝−1

𝑘=1 + 𝑐1𝜃(𝑥) + 𝑐0 (17) 

where 𝑐𝑘  (𝑘 = 0,… , 𝑝) are arbitrary constants and 𝜃(𝑥) is the Heaviside test function. 

The proof of this theorem also can be deduced from the Equation (11) and for more details refer 

to[8]when we had only 𝛿(𝑠)(𝑥) as second member of the investigated equation. 

In fact, in that case, we have investigated the Equation (16) with complete details and for full 

comprehension refer to[8] 𝑦′ = 1𝐴𝛿(𝑠)(𝑥)𝑥𝑝 = (−1)𝑝𝑠!𝐴(𝑠 + 𝑝)! 𝛿(𝑠+𝑝)(𝑥) +∑𝑐𝑘𝛿(𝑘−1)(𝑥)𝑝
𝑘=1  

from there by integration, with respect to 𝛿 = 𝜃′ we arrive to Equation (17) with respect to the principle 

of superposition of solutions. The theorem is proved. 

Let us move to the next interesting section. 

4. The non-degenerate case 

In this part, we undertake the most important and very interesting study of the considered equation, 

which is related to the situation when it is realized the following condition 𝐴𝐵 ≠ 0 (18) 

Let’s call this case a non-degenerate case. 

First of all, we are going to formalize the following important theorem which gives the necessary 

conditions for the solvency of the Equation (1) in 𝐾′. 
Theorem 6. Let ≠ 0,  𝑝 ∈ ℕ, 𝑛 ≥ 1, 𝑞 ∈ ℕ⋃{0}. For the solvency of the Equation (1) in the space 𝐾′ ,  it is 

necessary and sufficient that (𝑞 − 𝑝 + 1)2 + (𝐵 − 𝐴(𝑞 − 𝑝 + 1)2) ≠ 0 (19) 

Proof. For this proof, refer to[8], knowing that the particular solution 𝑦(𝑥)of the non-homogeneous 

Equation (1) should be a functional centered in zero of the form of such following defined functional 
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𝑦(𝑥) =∑𝑐𝑗𝛿(𝑗)(𝑥)𝑁
𝑗=0  (20) 

where 𝑁 is a sufficiently great number and suppose contrary Equation (19), i.e., when 𝑞 = 𝑝 − 1, 𝐵 = 𝐴(𝑞 + 𝑠 + 1), (21) 

after substitution Equation (21) into the equation and with the application of Lemma 2 we reach the 

following result: 𝐴𝑥𝑝∑𝑐𝑗𝛿(𝑗+1)(𝑥) + 𝐵𝑥𝑞∑𝑐𝑗𝛿(𝑗)(𝑥) =∑𝛿(𝑠)(𝑥)𝑛
𝑠=0

𝑁
𝑗=0

𝑁
𝑗=0  

From the previous, we obtain: 𝐴 ∑ (−1)𝑝(𝑗 + 1)!(𝑗 + 1 − 𝑝)! 𝑐𝑗𝛿(𝑗+1−𝑝)(𝑥) + 𝐵∑(−1)𝑞𝑗!!(𝑗 − 𝑞)! 𝑐𝑗𝛿(𝑗+𝑞)(𝑥) =∑𝛿(𝑠)(𝑥)𝑛
𝑠=0

𝑁
𝑗=𝑞

𝑁
𝑗=𝑝−1  (22) 

or after arrangement 𝐴 ∑ 𝑐𝑗+𝑝−1 (−1)𝑝(𝑗 + 𝑝)!𝑗! 𝛿(𝑗)(𝑥) + 𝐵 ∑ (−1)𝑞(𝑗 + 𝑞)!𝑗! 𝑐𝑗+𝑞𝛿(𝑗)(𝑥) =∑𝛿(𝑠)(𝑥)𝑛
𝑠=0

𝑁−𝑞
𝑗=0

𝑁−(𝑝−1)
𝑗=0  (23) 

From our previous results published in the paper[8] we got the conditions of solvency of the non-

homogeneous algebraic system which appears from Equation (23) in the case, when we had at the right 

hand side of the Equation (1) only 𝛿(𝑠)(𝑥). All what has been said and done lead us, by the application 

of the principle superposition of solutions to the following important results. 

These results are formalized in situations when the parameters p, q, A, B, and s are connected by 

some specific conditions, deduced systematically when analyzing the system arising in the process of the 

research of the needed solutions. □ 

Theorem 7. Let 𝐴𝐵 ≠ 0;  𝑝 ∈ ℕ, 𝑞, 𝑠 ∈ ℕ⋃{0} and be realized the condition 𝑞 = 𝑝 − 1, 𝐵 ≠ 𝐴(𝑞 + 𝑠 + 1). 
Then, the centered in zero general solution of the Equation (1) has the following form: 𝑦(𝑥) =∑ (−1)𝑞𝑠!(𝑠 + 𝑞)! [𝐵 − 𝐴(𝑠 + 𝑞 + 1)] 𝛿(𝑞+𝑠)(𝑥)𝑛

𝑠=0 +∑𝑐𝑗𝛿(𝑗)(𝑥)𝑞−1
𝑗=0  (24) 

where 𝑐𝑗 (𝑗 = 0, . . . , 𝑞 − 1) are arbitrary constants in the case when 𝐵 − 𝐴(𝑗 + 𝑞 + 1) ≠ 0, 𝑗 ∈ ℤ+. (25) 

And if there exists 𝑗∗ ∈ ℤ+\{𝑠}, such that 𝐵 − 𝐴(𝑗∗ + 𝑞 + 1) ≠ 0, 𝑗∗ ∈ ℤ+\{𝑠} (26) 

then, the solution has the following form 𝑦(𝑥) =∑ (−1)𝑞𝑠!(𝑠 + 𝑞)! [𝐵 − 𝐴(𝑠 + 𝑞 + 1)] 𝛿(𝑞+𝑠)(𝑥)𝑛
𝑠=0 +∑𝑐𝑗𝛿(𝑗)(𝑥)𝑞−1

𝑗=0 + 𝑐𝑗∗+𝑞𝛿(𝑗∗+𝑞)(𝑥) (27) 

where 𝑐𝑗 (𝑗 = 0, . . . , 𝑞 − 1), 𝑐𝑗∗+𝑞 are arbitrary constants. 

Proof. Applying the principle of superposition of solutions on the basis of our previous results we refer 

to the paper[8] we arrived easily at the needed result. 

Analogically as in the simple case, let us now move to the investigation of the most difficult and 

interesting case when it is realized the condition: 𝑞 ≠ 𝑝 − 1. □ 
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For this aim let’s formalize the following: 

Theorem 8. Let be fulfilled the condition 𝐴𝐵 ≠ 0, 𝑝 ∈ ℕ, 𝑛 ≥ 1, 𝑞, 𝑠 ∈ ℕ⋃{0} and realized the inequality 𝑞 < 𝑝 − 1. (28) 

Then, the centered in zero general solution of the Equation (1) is defined by the next formula: 𝑦(𝑥) = ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)! 𝛿(𝑞+𝑠)(𝑥)𝑛𝑠=0 +∑ 𝑐𝑗𝛿(𝑗)(𝑥) +𝑞−1𝑗=0∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)!∑ (−1)(𝑝−1−𝑞)𝑙(𝐴𝐵)𝑙[ 𝑠𝑝−1−𝑞]𝑙=1𝑛𝑠=0 𝛿(𝑞+𝑠−𝑙(𝑝−1−𝑞))(𝑥) × ∏ [𝑠+𝑝−𝑚(𝑝−1−𝑞)]![𝑠+𝑞−𝑚(𝑝−1−𝑞)]!𝑙𝑚=𝑙   

(29) 

where 𝑐𝑗 (𝑗 = 0, . . . , 𝑞 − 1) are arbitrary constants. 

Proof. It is the same as in the previous theorem as we particular have done in the paper[8]remembering 

that, the solution used was in the following form 

𝑦(𝑥) = ∑ 𝛾𝑙[ 𝑠𝑝−1−𝑞]
𝑙=0 𝛿(𝑞+𝑠−𝑙(𝑝−1−𝑞))(𝑥) (30) 

with unknown coefficients 𝛾𝑙.  
Analogically, it can be investigated the case in the contrary inequality. All what has been done 

conduct us to these following results devoted to the next theorems. Namely, it takes place. □ 

Theorem 9. Let 𝐴𝐵 ≠ 0; 𝑝 ∈ ℕ, 𝑛 ≥ 1; 𝑞, 𝑠 ∈ ℕ⋃{0} and realized the condition. 𝑞 > 𝑝 − 1. (31) 

Then, the centered in zero general solution of Equation (1) is given by the following formula: 𝑦(𝑥) = ∑ 𝑐𝑗𝛿(𝑗)(𝑥)𝑝−2𝑗=0 + ∑ (−1)𝑝𝑠!𝐴(𝑠+𝑝)! 𝛿(𝑠+𝑝−1)(𝑥)𝑛𝑠=0 +∑ (−1)𝑝𝑠!𝐴(𝑠+𝑝)!∑ (𝐴𝐵)𝑙(−1)𝑙(𝑞−𝑝+1)[ 𝑠𝑞−𝑝+1]𝑙=1ns=0 𝛿(𝑠+𝑝−1−𝑙(𝑞−𝑝−1))(𝑥) × ∏ [𝑠+𝑞−𝑚(𝑞−𝑝+1)]![𝑠+𝑝−𝑚(𝑞−𝑝+1)]!𝑙𝑚=1 ,  (32) 

where 𝑐𝑗 (𝑗 = 0, . . . , 𝑝 − 2) − are arbitrary constants. 

Proof. Let us conduct this proof when we consider having only an s-order of the delta-Dirac function i.e., 𝛿(𝑠)(𝑥) in the right-hand side of the investigated equation and from that, it consequently be deduced 

obtained the global result by applying the principle of superposition. 

In fact, it is sufficient to find the particular solution of Equation (1) in this case evocated and for this 

aim, one can refer to[8]and set the form of the distributional function as follows: 

𝑦(𝑥) = ∑ 𝛾𝑙[ 𝑠𝑞−𝑝+1]
𝑙=0 𝛿(𝑠+𝑝−1−𝑙(𝑞−𝑝−1))(𝑥) 

with unknown coefficient 𝛾𝑙. Putting it into Equation (1) with only an s-order of the delta-Dirac function 

i.e., 𝛿(𝑠)(𝑥) in the right hand side we obtain 

𝐴𝑥𝑝 ∑ 𝛾𝑙𝛿(𝑠+𝑝−𝑙(𝑞−𝑝+1))(𝑥) + 𝐵𝑥𝑞 ∑ 𝛾𝑙𝛿(𝑠+𝑞−1−(𝑙+1)(𝑞−𝑝+1))(𝑥) = 𝛿(𝑠)(𝑥)[ 𝑠𝑞−𝑝+1]
𝑙=0

[ 𝑠𝑞−𝑝+1]
𝑙=0  

(a) 

From the previous, we now reach the following recurrent relationships: 
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{  
  𝛾0 = (−1)𝑝𝑠!𝐵(𝑠 + 𝑞)! ;𝛾𝑙 = (−1)𝑞−𝑝+1𝐵[𝑠 + 𝑞 − 𝑙(𝑞 − 𝑝 + 1)]! 𝛾𝑙−1𝐴[𝑠 + 𝑝 − 𝑙(𝑞 − 𝑝 + 1)]! , 𝑙 = 1,2, … , [ 𝑠𝑝 − 1 − 𝑞] (b) 

This leads us to the final result: 𝛾𝑙 = 𝛾0((−1)𝑞−𝑝+1𝐵𝐴 )𝑙 ∏[𝑠 + 𝑞 −𝑚(𝑞 − 𝑝 + 1)]![𝑠 + 𝑝 −𝑚(𝑞 − 𝑝 + 1)]!𝑙
𝑚=1 , 𝑙 = 1,… , [ 𝑠𝑞 − 𝑝 + 1]. (c) 

The theorem is proved. □ 

Now let us move to the following important section. 

5. Classical solutions of the homogeneous Equation (1) and final results 

The next short section presents important results on the basis of already found classical solutions 

taken into account. 

As obtained in our previous research, all the classical solutions of the homogeneous equation in the 

case 𝐴𝐵 ≠  0 remain the same. For full details refer to[8] 

Let’s formalize the following important definition related to Equation (1). 

Definition 3. Equation (1) is called particular when the conditions p = q +1 and B = A(q+ s + 1) are 

realized and in the contrary case, it is called nonparticular. Then, let us formalize in the following global 

Theorem 10, the final results of our investigation by combining all that has been obtained in the three 

previous theorems. 

Theorem 10. The general solution of the non-particular Equation (1) when 𝐴. 𝐵 ≠ 0, 𝑝 ∈ ℕ, 𝑛 ≥ 1, 𝑞, 𝑠 ∈ℕ⋃{0} has the following forms: 

1) If q > p – 1 𝑦(𝑥) = 𝑘1𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(𝑥) + 𝑘2𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(−𝑥) + ∑ 𝑐𝑗𝛿(𝑗)(𝑥)𝑝−2𝑗=0 + ∑ (−1)𝑝𝑠!𝐴(𝑠+𝑝)! 𝛿(𝑠+𝑝−1)(𝑥)𝑛𝑠=0 +  ∑ (−1)𝑝𝑠!𝐴(𝑠+𝑝)!∑ (𝐵𝐴)𝑙(−1)𝑙(𝑞−𝑝+1)[ 𝑠𝑞−𝑝+1]𝑙=1ns=0 ×∏ [𝑠+𝑞−𝑚(𝑞−𝑝+1)]![𝑠+𝑝−𝑚(𝑞−𝑝+1)]!𝑙𝑚=1 𝛿(𝑠+𝑝−1−𝑙(𝑞−𝑝−1))(𝑥),  (33) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑝−2 are arbitrary constants. 

2) If 𝑞 < 𝑝 − 1, 
𝐵𝐴 < 0, and 𝑞 − 𝑝 odd number, then we have: 𝑦(𝑥) = 𝑘1𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(𝑥) + 𝑘2𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(−𝑥) + ∑ 𝑐𝑗𝛿(𝑗)(𝑥)𝑞−1𝑗=0 +∑ (−1)𝑞𝑠!𝐴(𝑠+𝑞)! 𝛿(𝑠+𝑞)(𝑥)𝑛𝑠=0 (−1)𝑞𝑠!𝐴(𝑠+𝑞)! 𝛿(𝑠+𝑞)(𝑥) +  ∑ (−1)𝑞𝑠!𝐴(𝑠+𝑞)!∑ (𝐴𝐵)𝑙(−1)𝑙(𝑝−1−𝑞)[ 𝑠𝑝−1−𝑞]𝑙=1ns=0 ×∏ [𝑠+𝑝−𝑚(𝑝−1−𝑞)]![𝑠+𝑞−𝑚(𝑝−1−𝑞)]!𝑙𝑚=1 𝛿(𝑠+𝑞−𝑙(𝑝−1−𝑞))(𝑥)  (34) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 are arbitrary constants. 

3) If 𝑞 < 𝑝 − 1, 𝐵𝐴 > 0 and 𝑞 − 𝑝 even number, then we obtain: 
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𝑦(𝑥) =  𝑘1𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(𝑥) + ∑ (−1)𝑞𝑠!𝐴(𝑠+𝑞)! 𝛿(𝑠+𝑞)(𝑥)ns=0 +∑ 𝑐𝑗𝛿(𝑗)(𝑥) +𝑞−1𝑗=0  ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)!∑ (𝐴𝐵)𝑙(−1)𝑙(𝑝−1−𝑞)[ 𝑠𝑝−1−𝑞]𝑙=1𝑛𝑠=0 ×∏ [𝑠+𝑝−𝑚(𝑝−1−𝑞)]![𝑠+𝑞−𝑚(𝑝−1−𝑞)]!𝑙𝑚=1 𝛿(𝑠+𝑞−𝑙(𝑝−1−𝑞))(𝑥)  (35) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 are arbitrary constants. 

4) If 𝑞 < 𝑝 − 1, 𝐵𝐴 > 0 and 𝑞 − 𝑝 odd number, then it follows: 𝑦(𝑥) = ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)! 𝛿(𝑠+𝑞)(𝑥)𝑛𝑠=0 +∑ 𝑐𝑗𝛿(𝑗)(𝑥) +𝑞−1𝑗=0  ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)!∑ (𝐵𝐵)𝑙(−1)𝑙(𝑝−1−𝑞)[ 𝑠𝑝−1−𝑞]𝑙=1𝑛𝑠=0 ×∏ [𝑠+𝑝−𝑚(𝑝−1−𝑞)]![𝑠+𝑞−𝑚(𝑝−1−𝑞)]!𝑙𝑚=1 𝛿(𝑠+𝑞−𝑙(𝑝−1−𝑞))(𝑥), (36) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 are arbitrary constants. 

5) If 𝑞 < 𝑝 − 1, 𝐵𝐴 > 0 and 𝑞 − 𝑝 even number, then we have: 𝑦(𝑥) = 𝑘2𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(−𝑥) + ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)!𝛿(𝑠+𝑞)(𝑥)𝑛𝑠=0 +∑ 𝑐𝑗𝛿(𝑗)(𝑥) +𝑞−1𝑗=0 ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)!∑ (𝐴𝐵)𝑙(−1)𝑙(𝑝−1−𝑞)[ 𝑠𝑝−1−𝑞]𝑙=1𝑛𝑠=0 ×∏ [𝑠+𝑝−𝑚(𝑝−1−𝑞)]![𝑠+𝑞−𝑚(𝑝−1−𝑞)]!𝑙𝑚=1 𝛿(𝑠+𝑞−𝑙(𝑝−1−𝑞))(𝑥)  (37) 

where 𝑘2, 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 ; are arbitrary constants. 

Finally, we now move to the next following situation. 

6) The situation when 𝑞 = 𝑝 − 1, 𝐵 ≠ 𝐴(𝑞 + 𝑠 + 1) 
(1) If  𝐵 − 𝐴(𝑗 + 𝑞 + 1) ≠ 0 ∀𝑗 ∈ ℤ+ and 

𝐵𝐴 < 1, 

𝑦(𝑥) =∑ (−1)𝑞𝑠!(𝑠 + 𝑞)! [𝐵 − 𝐴(𝑞 + 𝑠 + 1)] 𝛿(𝑠+𝑞)(𝑥)𝑛
𝑠=0 +∑𝑐𝑗𝑞−1

𝑗=0 𝛿(𝑗)(𝑥)+𝑘1𝑥−𝐵𝐴𝜃(𝑥) + 𝑘2|𝑥|−𝐵𝐴𝜃(−𝑥) (38) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 ; are arbitrary constants. 

(2) If ∃ 𝑗∗ ∈ ℤ+\{𝑠} such that, 𝐵 − 𝐴(𝑗∗ + 𝑞 + 1) = 0 and 
𝐵𝐴 < 1, 𝑦(𝑥) = ∑ (−1)𝑞𝑠!(𝑠+𝑞)![𝐵−𝐴(𝑞+𝑠+1)] 𝛿(𝑠+𝑞)(𝑥)𝑛𝑠=0 + 𝑐𝑗∗+𝑞𝛿(𝑗∗+𝑞)(𝑥) + ∑ 𝑐𝑗𝑞−1𝑗=0 𝛿(𝑗)(𝑥)+𝑘1𝑥−𝐵𝐴𝜃(𝑥) +𝑘2|𝑥|−𝐵𝐴𝜃(−𝑥), (39) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1, 𝑐𝑗∗+𝑞  ; are arbitrary constants. 

(3) If 𝐵 − 𝐴(𝑗 + 𝑞 + 1) ≠ 0, ∀ 𝑗 ∈ ℤ+ and 
𝐵𝐴 ≥ 1, (𝑥) =∑ (−1)𝑞𝑠!(𝑠 + 𝑞)! [𝐵 − 𝐴(𝑞 + 𝑠 + 1)] 𝛿(𝑠+𝑞)(𝑥)𝑛

𝑠=0 +∑𝑐𝑗𝑞−1
𝑗=0 𝛿(𝑗)(𝑥), (40) 

where 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 ; are arbitrary constants. 

(4) If ∃ 𝑗∗ ∈ ℤ+\{𝑠} such that, 𝐵 − 𝐴(𝑗∗ + 𝑞 + 1) = 0 and 
𝐵𝐴 ≥ 1, 𝑦(𝑥) =∑ (−1)𝑞𝑠!(𝑠 + 𝑞)! [𝐵 − 𝐴(𝑞 + 𝑠 + 1)] 𝛿(𝑠+𝑞)(𝑥)𝑛

𝑠=0 + 𝑐𝑗∗+𝑞𝛿(𝑗∗+𝑞)(𝑥)   +∑𝑐𝑗𝑞−1
𝑗=0 𝛿(𝑗)(𝑥) (41) 

where 𝑐𝑗∗+𝑞 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 ; are arbitrary constants. 
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Let us do this important remark before concluding our work. 

Remark 2. As we note, the expressions defining the general solutions of the investigated equation are quite huge 

and one should verify that these obtained formulas do satisfy the identity left part equal to the right one. 

For example, in the case when 𝑞 < 𝑝 − 1, 𝐵𝐴 > 0 and 𝑞 − 𝑝 even number, we should replace the 

Equation (37) defined upstairs of the general solution in the Equation (1), and we must obtain exactly 

after all calculations 𝐴𝑥𝑝𝑦′(𝑥) + 𝐵𝑥𝑞𝑦(𝑥) =∑𝛿(𝑠)(𝑥).𝑛
𝑠=0  

This means, If 𝑞 < 𝑝 − 1, 𝐵𝐴 > 0 and 𝑞 − 𝑝 even number then, the solution defined by the Equation 

(37) verifies Equation (1), i.e., 𝑦(𝑥) ∈ 𝐾′ and ∀𝜑(𝑥) ∈ 𝐾 we should have: (𝐴𝑥𝑝𝑦′(𝑥) + 𝐵𝑥𝑞𝑦(𝑥), 𝜑(𝑥)) = (∑𝛿(𝑠)(𝑥), 𝜑(𝑥)) =∑(−1)(𝑠)𝜑(𝑠)(0).𝑛
𝑠=0

𝑛
𝑠=0  (42) 

By virtue of the linearity we reach the following step: (𝐴𝑥𝑝𝑦′(𝑥), 𝜑(𝑥)) + (𝐵𝑥𝑞𝑦(𝑥), 𝜑(𝑥)) =∑(−1)(𝑠)𝜑(𝑠)(0).𝑛
𝑠=0  (43) 

Otherwise using the property of the derivative of a distribution we have: (𝑦′(𝑥), 𝐴𝑥𝑝𝜑(𝑥)) + (𝑦(𝑥), 𝐵𝑥𝑞𝜑(𝑥)) =∑(−1)(𝑠)𝜑(𝑠)(0).𝑛
𝑠=0  (44) 

−(𝑦(𝑥), (𝐴𝑥𝑝𝜑(𝑥))′) + (𝑦(𝑥), 𝐵𝑥𝑞𝜑(𝑥)) =∑(−1)(𝑠)𝜑(𝑠)(0).𝑛
𝑠=0  (45) 

the previous leads us to the next result: (𝑦(𝑥), −(𝐴𝑥𝑝𝜑′(𝑥) + 𝐴𝑝𝑥𝑝−1𝜑(𝑥)) + 𝐵𝑥𝑞𝜑(𝑥) =∑(−1)(𝑠)𝜑(𝑠)(0).𝑛
𝑠=0  (46) 

After little arrangement we obtain: (𝑦(𝑥), −𝐴𝑥𝑝𝜑′(𝑥) + (𝐵𝑥𝑞 − 𝐴𝑝𝑥𝑝−1)𝜑(𝑥)) =∑(−1)(𝑠)𝜑(𝑠)(0).𝑛
𝑠=0  (47) 

Finally, substituting the solution by its analytical formula we should get: (𝑘1𝑒−𝐵𝑥𝑞−𝑝+1𝐴(𝑞−𝑝+1)𝜃(𝑥) + ∑ (−1)𝑞𝑠!𝐴(𝑠+𝑞)! 𝛿(𝑠+𝑞)(𝑥)ns=0 +
∑ 𝑐𝑗𝛿(𝑗)(𝑥) +𝑞−1𝑗=0  ∑ (−1)𝑞𝑠!𝐵(𝑠+𝑞)!∑ (𝐴𝐵)𝑙(−1)𝑙(𝑝−1−𝑞)[ 𝑠𝑝−1−𝑞]𝑙=1𝑛𝑠=0 ×∏ [𝑠+𝑝−𝑚(𝑝−1−𝑞)]![𝑠+𝑞−𝑚(𝑝−1−𝑞)]!𝑙𝑚=1 𝛿(𝑠+𝑞−𝑙(𝑝−1−𝑞))(𝑥), −𝐴𝑥𝑝𝜑′(𝑥) + (𝐵𝑥𝑞 − 𝐴𝑝𝑥𝑝−1)𝜑(𝑥)) =∑ (−1)(𝑠)𝜑(𝑠)(0).𝑛𝑠=0   

(48) 

where 𝑘1, 𝑘2 , 𝐴, 𝐵, 𝑐0, … , 𝑐𝑞−1 are arbitrary constants. 
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6. Conclusion 

Completely achieved in this paper is a whole description of all the generalized-function solutions of 

the linear singular differential equation of the first order in the space of generalized functions K’ with a 

second right-hand side in the form of a finite linear combination of the Dirac-delta functions and their 

derivatives. Based on our previous research, we applied case by case, the well-known principle of 

superposition of the solutions of a differential equation, taking into account the various relationships 

between the parameters of the studied equation. All the results obtained are described in the theorems we 

formulated within the paper. At the end of the work we write the lines of the verification of the general 

solution of the investigated equation in one describe the case. 
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