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1. Introduction & observation

In the study of Fedotov!], a new definition of a variable order derivative used to state a variable
order integro-differential equation and to prove the convergence of the quadrature-difference method
for its solution. In another study by Fedotov!?, the norm of the Hermite-Fejér interpolative operator
with integer order derivatives is estimated. To develop the theory and practical use of the defined
variable order derivatives the estimation of the norm of the Hermite-Fejér interpolative operator with
derivatives of variable order is needed. Here, the results of Fedotov’s®? paper are generalized to the
variable order derivatives defined in another of his paper!".

2. Definition of the fractional order derivative

For the following, let us denote N the set of positive integers (we write N, if N is supplemented
with the zero), Z the set of all integers, R the set of real numbers. Now let us fix s € R and denote H®
Sobolev space of order s, i.e., the closure of all 2m-periodic complex-valued functions of one variable
with respect to the norm:
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where £(1) = po ffﬁx(r)el(r) dt, | € Z, are Fourier coefficients of the function x € HS over the system

of functions e;(7) = e, L € Z.
Hereinafter we will suppose, that s > > which?! is sufficient for the embedding H® in the space of
continuous functions and H*? in the space of functions, which derivatives are continuous.

Let us assume that the function a(t),0 < a(t) < 1,t € [—m, 1), belongs to the space H* and define
for the functions of H5*1 a derivative of order «a,
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x@®)(t) = (1 - a(t))x(t) + al®)x'(t), x € H5*L,t € [-m, ™).

In case a(t) =0,t € [—n,n),x(“(t))(t) coincides with the function x(t); in case a(t) = 1,t €
[—m, ), x(“(t))(t) coincides with the derivative x'(t). So, this definition should be considered as correct
one. In the following we suppose that 0 < a(t) <1, t € [—m, ).

Let us fixn € N,, define the grid of equidistant nodes

21tk
< 1
2n+1,|k|_n (1)

tk=

and denote P, ,: H5*1 — H5*1,

(P, X)(‘L') = Z (x(tk) + ix(a(tk))(tk) - (1 - a’(tk))x(tk)

alt
lkT=n (ti)
Hermite-Fejér interpolation operator which assigns, to each function x € HS*1 the trigonometric

interpolation polynomial P, ,x € HS*! at the Equation (1) of multiplicity a. Here
sin ((2n+1)(t—tg)/2)

(T, t) = ((2n+1)sin ((‘r—tk)/z) (2n+1)2
are normalized Fejér kernels at the Equation (1).

(1 —e(r — t)))én (. ),

Dis2n(@n+ 1= |lDe (T = ty), lk] < n,

Theorem 1. For alls € R,s > 1/2,andn € N, the following estimate is valid: ||Pa,n||Hs+1_,H5+1 < 2./0(2s),

where {(t) = ;?°=1 j~t is the Riemann zeta function bounded and decreasing for t > 1.

Proof. Let us fixs € R,s > 1/2,and n € N and take a function x € HS*1. We construct the polynomial
@@ () = (1 = a(t))x(t)
a(ty)

(Pun)(7) = z () + i (1 = e,(z — ))& (7, 1)

|k|sn
and replace in it the Fejér kernels and the value of the function x and its derivative x(“(T))(T) at the
Equation (1) by their Fourier series
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Since
_(2n+1, qg—1l=u@n+1),
4 eq-1(tic) = { 0, q—1#un+1), hEZ
n
_(2n+1, q—1-1=un+1),
Z eq_l_l(tk)_{ 0, g—1—-1#un+1), HEZ
|k|sn
then
(Pynx) (@) = T 1 Z @2n+1—|lDe (v) Z x(l +u2n + 1))(1 —l—u2n+1))

[tls2n UEZ
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Denoting
1, 1>1,
sgnl = |l|—|l—1|={_1 <0

we obtain, that Fourier coefficients of the polynomial P, ,,x are equal to
(Pa'nx)(l) = Yuez J?(l +u2n + 1))(1 +usgnl), —2n <1< 2n+1.

Now, according to the definition of the norm in H5*1, we have
2

2 2n+1
”P"‘rnx”m+1 = z z (L +u@n+ 1)+ psgnl)| 125+2
l=-2n ez
2

2n+1 (L +p@2n+ 1)t rers
[+ u@n+ 1)) —————=—(1 D| L
Zl——z ; 2+ uCn+ D) i m g et L+ s L

(1 +,LngTll)2£25+2
— (I+u@n+1))23s+2

(1 + usgnl)2£25+2

l=-2n uez

< zznﬂ z 1% (1 + u@n + D)| (1 + u@n + 1))2+2
m

2
< 2lixllysea _, max QT a@nt D)=
pez e T V)
The function
W = (1 + usgnl)?1?s*2 i (1 + usgnl)?1?s*2 (1 — pusgnl)?1>s+2 ez
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is even one, SO

y(O = max y(.
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Let us estimate the values of the function y(l), 0 <1 <2n+1,
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Finally, we have

=20(2s),
and it is achieved at [ = 2n + 1. Theorem is proven. O
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