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ABSTRACT: Multi-attribute group decision-making (MAGDM) is very

significant technique for selecting an alternative from the provided list.

But the major problem is to deal with the information fusion during the

information. Aczel-Alsina t-norm (AATN) and Aczel-Alsina t-conorm

(AATCN) are the most generalized and flexible t-norm (TN) and t-

conorm (TCN) which is used for information processing. Moreover, the

interval-valued T-spherical fuzzy set (IVTSFS) is the latest framework to

cover the maximum information from the real-life scenarios. Hence, the

major contribution of this paper is to deal the information while the

MAGDM process by introducing new aggregation operators (AOs).

Consequently, the interval-valued T-spherical fuzzy (IVTSF), Aczel-

Alsina weighted averaging (IVTSFAAWA), IVTSF Aczel-Alsina

(IVTSFAA) ordered weighted averaging (IVTSFAAOWA), IVTSFAA

weighted geometric (IVTSFAAWG), IVTSFAA ordered weighted

geometric (IVTSFAAOWG), and IVTSFAA hybrid weighted geometric

(IVTSFAAHWG) operators are developed. It is shown that the proposed

operators are the valid and the results obtained are reliable by discussing

some basic properties. To justify the developed AOs, an example of the

MAGDM is discussed. The sensitivity of these AOs is observed keeping

in view of the variable parameter. To show the importance of the newly

developed theory, a comparison of the proposed AOs is established with

already existing operators.

KEYWORDS: T-spherical fuzzy set; interval-valued T-spherical fuzzy set;

Aczel-Alsina t-norm; decision making

1. Introduction
Improbability and incompleteness are constant problems once interpreting information. For instance,

the concept of crisp sets holds that an object either belongs to or is not part of a specific scenario. However,
many things in the true world could not be described in such detail. Zadeh[1] referred to this concept as
FS and defined the membership of an element by membership degree (MD) in the range [0, 1] . By
applying the FS, the ambiguity and the uncertainty reduce while describing any uncertain situation in
mathematical model. However, FS is limited due to description of an object with the help of only MD.
To describe the object with help of MD as well as non-MD (NMD), Atanassov[2] introduced the
intuitionistic FS (IFS). In IFS, the sum of the MD and NMD should be in the unit interval. IFS can give
the better description of an object as compared to the FS. But it was still limited because sum of MD and
NMD exceeded from 1 in some cases. To extend the range of the IFS, Yager[3] established the idea of
Pythagorean FS (PyFS) by imposing lenient criterion by adding the square of the MD 𝑐𝑐 and NMD 𝑣𝑣
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such that 𝑐𝑐2 + 𝑣𝑣2 ∈ [0, 1]. As a result of the flexible condition for objects, PyFS can reduce information 
loss and covers more information from the real-life scenarios. Though, some items with, 𝑐𝑐, 𝑣𝑣 ∈ [0, 1] 
could not yet be described by PyFS. Yager[4] proposed the concept of q-rung orthopair FS (qROFS) 
utilizing any positive real number raised by MD and NMD, i.e., 𝑐𝑐𝑞𝑞 + 𝑣𝑣𝑞𝑞 ∈ [0, 1], in order to get around 
PyFS’s flaw. 

The developed methods in prior studies[1–4] handled the information with the help of only two degrees 
i.e., MD and NMD. But there are various types of the real-life scenarios which could be described with 
the help of only MD and NMD. For example, to describe the scenario of voting, Cuong[5] introduced the 
picture FS (PFS) with an additional degree called abstinence degree (AD). He imposed the condition that 
the sum of the MD, AD, and NMD should be in unit interval. PFS can describe an object to the part of 
the real-life scenarios with more certainty as compared to the previous frameworks. But sometimes, the 
sum of the MD, AD, and NMD did not the part of the unit interval. After noticing these restrictions, 
Mahmood et al.[6] enlarged the idea of PFS to spherical FS (SFS), and then to T-spherical FS (TSFS), to 
relax the decision-makers to assign these MD, AD, and NMD from unit interval as their individual 
preferences. To cover the more information than the TSFS. Ullah et al.[7] introduced the IVTSFS by 
describing the information as the intervals of MD, AD, and NMD. Hence, the IVTSFS is the framework 
that deals with the information in the form of the intervals with minimum level of uncertainty. It has also 
the capability to extract the maximum information from the real-life scenarios. 

In many scientific domains, MAGDM is a significant topic, particularly when choosing one among 
a list of options based on certain criteria. Since the beginning of MAGDM, FS theory has been a key 
component. Several researchers developed AOs to solve the MAGDM problems by using IFS, PyFS, 
qROFS, PFS, SFS, TSFS, and IVTSFS. Ali et al.[8] applied AOs to solve the MAGDM problem for the 
assessments for the establishment of software outsourcing partnerships. For resolving the MAGDM 
problem, Hung et al.[9] developed AOs for IFSs. AOs in the context of PyFS with application in MAGDM 
was formalized by the study of Zhang and Xu[10]. The AOs were created for the qROFS environment for 
use in MAGDM. Based on qROFS, Yang and Pang[11] presented the three-way MAGDM. Wei[12] 
provided AOs for the PFS and then utilized them in MAGDM. Ullah et al.[13] created AOs for the 
situation of picture-hesitant FS to address the MAGDM complications. Ullah et al.[14] introduced the 
AOs for TSF based on the Hamacher and used them in MAGDM. Zeng et al.[15] developed the AOs for 
TSFS with their application to MAGDM problems. AOs applied in the MAGDM for the selection of the 
solar cell selection based on Einstein’s operational laws are presented by Munir et al.[16]. AOs for TSFS 
based on the Frank operational laws are presented by Mahnaz et al.[17] and Riaz and Farid[18] introduced 
AOs for PFS, Ali et al.[19] introduced AOs for qROFS, Khan et al.[20] introduced AOs for TSFS, and so 
on. 

Additionally, the literature has a large number of AOs based on TN and TCN that were first 
introduced to FS theory by Deschrijver et al.[21]. AOs for IF were created by Xia et al.[22] using 
Archimedean TN and TCN. AOs for IFS were created by Wang and Liu[23] utilizing Einstein TN and 
TCN. Based on Einstein TN and TCN, Wei and Zhao[24] presented the AOs for interval-valued IFS 
(IVIFS). Liu[25] created interval-valued IF (IVIFS) AOs using Hamacher TN and TCN. By utilizing 
Dombi TN and TCN, Ullah et al.[26] established AOs for the IVTSFS. If power AOs were created by 
Zhang et al.[27] using Frank TCN and TN. It shows that the role of the TNs and TCNs is very important 
for the information fusion and in the development of the AOs. However, another type of TN and TCN, 
the AATN and AATCN were initially introduced by Aczel and Alsina[28]. It has greater flexibility than 
the other TN and TCN previously cited and is helpful in the fusion of information. Due to the usefulness 
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of the AATN and AATCN Senapati et al.[29] used in the development of the AOs for IFS. Moreover, the 
AATN and AATCN are utilized by Hussain et al.[30] for development of the AOs for the TSFS. Senapati 
et al.[31] used AATN and AATCN to develop the AOs for hesitant fuzzy environment. Senapati et al.[32] 
used AATN and AATCN in IFS environment to introduce AOs. Senapati et al.[33] used AATN and 
AATCN in IVIFS environment to introduce AOs. Senapati et al.[34] used AATN and AATCN in IFS 
environment to introduce AOs. Senapati et al.[35] used AATN and AATCN in interval Valued PFS 
(IVPFS) environment to introduce AOs. Senapati et al.[36] used AATN and AATCN in PyFS 
environment to introduce AOs. Senapati et al.[37] used AATN and AATCN in q-ROFS environment to 
introduce AOs. Senapati[38] used AATN and AATCN in PFS environment to introduce AOs. 

Motivations behind this article are provided as follows. 
1) AATN and AATCN is the most generalized form of the operational laws based on the parameter. 

AATN and AATCN converts some basic TNs and TCN in special cases of the involved parameter. 
2) Moreover, Farahbod and Eftekhari[39] did the comparison between different TNs and TCNs for the 

classification of the information. They found that the AATN and AATCN is the most reluctant, 
flexible, and reliable to deal with the fuzzy information. We can infer from the investigation above 
that the AOs used in MAGDM is complicated by actual phenomena. The information should be 
handled with more reliability to get the optimal alternative in MAGDM. 

3) Additionally, IVTSFS operates the information with more certainty than IFS, IVIFS, PyFS, qROFS, 
PFS, SFS, and TSFS. We have not yet discovered the use of AATN and AATCN for the IVTSFS 
framework. 

4) The information obtained from the real-life scenarios by the IVTSFS should be aggregated by using 
some latest operators. Hence, new AOs are developed in this article based on AATN and AATCN. 

Hence, we are inspired by these factors to ready this study. The following is how this article is 
organized: 

Section 2 includes an introduction to basic terminology that make the article easier to understand. 
In section 3, we define the TSFS, the IVTSFS, Aczel-Alsina sum, product, scalar multiplication, and 
power operation for IVTSF values (IVTSFVs). The IVTSFAAWA, IVTSFAAOWA and IVTSFAAHA 
operators are created and their basic properties are discussed in section 4. With the aid of the Aczel-
Alsina (AA) sum and AA product, we develop the IVTSFAAWG, IVTSFAAOWG, and IVTSFAAHG 
operators in section 5 and observe their properties. The application of the IVTSFAAWA and 
IVTSFAAWG operators to the MAGDM problem is covered in section 6. In section 6, we also examine 
how the IVTSFAAWA and IVTSFAAWG operators behave for various parameter values and conduct 
a comparison with other AOs. In section 7, we conclude this study. 

2. Preliminaries 
We shall introduce some fundamental terms in this section. The terms TSFS, IVTSFS, score 

function, AATN, and AATCN are defined in this section. 

Definition 1. The set 𝑇𝑇 = {(𝜌𝜌, 𝑐𝑐(𝜌𝜌), 𝑒𝑒(𝜌𝜌), 𝑣𝑣(𝜌𝜌)|𝜌𝜌 ∈ 𝕌𝕌)} is considered a TSFS where 𝕌𝕌 is the universe and 𝑐𝑐, 𝑒𝑒, 𝑣𝑣 

are mappings from 𝕌𝕌  to [0, 1] . 𝑐𝑐(𝜌𝜌), 𝑒𝑒(𝜌𝜌), 𝑣𝑣(𝜌𝜌)  are MD, AD, and NMD respectively such that 0 ≤ 𝑐𝑐𝑟𝑟(𝜌𝜌) +

𝑒𝑒𝑟𝑟(𝜌𝜌) + 𝑣𝑣𝑟𝑟(𝜌𝜌) ≤ 1  where 𝑟𝑟 ∈ 𝑧𝑧+ . Moreover, π = �1 − �𝑐𝑐𝑟𝑟(𝜌𝜌) + 𝑒𝑒𝑟𝑟(𝜌𝜌) + 𝑣𝑣𝑟𝑟(𝜌𝜌)�
𝑟𝑟

  is known as RD of the T-

spherical fuzzy value (TSFV) and �𝑐𝑐(𝜌𝜌), 𝑒𝑒(𝜌𝜌), 𝑣𝑣(𝜌𝜌)� is called a TSF value (TSFV). 
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Definition 2. The set 𝑇𝑇 = {(𝜌𝜌, 𝑐𝑐(𝜌𝜌), 𝑒𝑒(𝜌𝜌), 𝑣𝑣(𝜌𝜌)|𝜌𝜌 ∈ 𝕌𝕌)}  is considered a IVTSFS where 𝕌𝕌  is the universe 

and  𝑐𝑐, 𝑒𝑒, 𝑣𝑣  are mappings from 𝕌𝕌  to [0, 1]  in the form of intervals. Moreover,  𝑐𝑐(𝜌𝜌) = [𝑐𝑐𝑙𝑙 , 𝑐𝑐𝑢𝑢], 𝑒𝑒(𝜌𝜌) =
[𝑒𝑒𝑙𝑙 , 𝑒𝑒𝑢𝑢],𝑣𝑣(𝜌𝜌) = [𝑣𝑣𝑙𝑙 ,𝑣𝑣𝑢𝑢]  are MD, AD, and NMD respectively such that 0 ≤ 𝑐𝑐𝑢𝑢𝑟𝑟(𝜌𝜌) + 𝑒𝑒𝑢𝑢𝑟𝑟(𝜌𝜌) + 𝑣𝑣𝑢𝑢𝑟𝑟(𝜌𝜌) ≤ 1 

where 𝑟𝑟 ∈ 𝑧𝑧+ . Moreover, π = ��1 − �𝑐𝑐𝑢𝑢𝑟𝑟(𝜌𝜌) + 𝑒𝑒𝑢𝑢𝑟𝑟(𝜌𝜌) + 𝑣𝑣𝑢𝑢𝑟𝑟(𝜌𝜌)�
𝑟𝑟

, �1 − �𝑐𝑐𝑙𝑙𝑟𝑟(𝜌𝜌) + 𝑒𝑒𝑙𝑙𝑟𝑟(𝜌𝜌) + 𝑣𝑣𝑙𝑙𝑟𝑟(𝜌𝜌)�
𝑟𝑟

�  is 

known as RD of the IVTSF value (IVTSFV). 

Definition 3. Let 𝑠𝑠𝑐𝑐(𝛼𝛼) indicate the score value of IVTSFV 𝛼𝛼. Then score value can be specified as 

𝑠𝑠𝑐𝑐(𝛼𝛼) =
�𝑐𝑐𝑙𝑙�

𝑟𝑟
�1−�𝑒𝑒𝑙𝑙�

𝑟𝑟
−(𝑣𝑣ℊ)𝑟𝑟�+(𝑐𝑐𝑢𝑢)𝑟𝑟(1−(𝑒𝑒𝑢𝑢)𝑟𝑟−(𝑣𝑣𝑢𝑢)𝑟𝑟)

3
. 

The AATN and AATCN is the most flexible TN and TCN defined by Aczél and Alsina[28]. The 
definition of the AATN and TCN is provided as follows. 

Definition 4. The AATN is defined as 

𝑇𝑇𝐵𝐵𝑀𝑀(𝛼𝛼,𝛽𝛽) = �
𝑇𝑇𝑐𝑐(𝛼𝛼,𝛽𝛽)        𝑖𝑖𝑖𝑖 𝛤𝛤 = 0

min(𝛼𝛼,𝛽𝛽)      𝑖𝑖𝑖𝑖 𝛤𝛤 → ∞

𝑒𝑒−�(−ln𝛼𝛼))𝛤𝛤+(−ln𝛽𝛽)𝛤𝛤�
1
𝛤𝛤otherwise

. 

Furthermore, the AATCN is defined by 

𝑆𝑆𝐵𝐵𝑀𝑀(𝛼𝛼,𝛽𝛽) = �
𝑇𝑇𝐶𝐶(𝛼𝛼,𝛽𝛽)         𝑖𝑖𝑖𝑖 Γ = 0

max(𝛼𝛼,𝛽𝛽)       𝑖𝑖𝑖𝑖 𝛤𝛤 → ∞

1 − 𝑒𝑒−�(−ln(1−𝛼𝛼))𝛤𝛤+(−ln(1−𝛽𝛽))𝛤𝛤�
1
𝛤𝛤�
. 

where 𝛤𝛤 ∈ [0, ∞]. 

3. Operational laws for IVTSFVS based on AATN and AATCN 
This section deals with the introduction of some operations for IVTSFVs based on the AATN and 

AATCN. The AA sum 𝑋𝑋⊕𝐴𝐴𝐴𝐴 𝑌𝑌 and product 𝑋𝑋⊗𝐴𝐴𝐴𝐴 𝑌𝑌 between two IVTSFVs 𝑋𝑋 = (𝑐𝑐𝑋𝑋 , 𝑒𝑒𝑋𝑋, 𝑣𝑣𝑋𝑋) and 𝑌𝑌 =
(𝑐𝑐𝑌𝑌, 𝑒𝑒𝑌𝑌, 𝑣𝑣𝑌𝑌) are defined first as follows. 

𝑋𝑋⊕𝐴𝐴𝐴𝐴 𝑌𝑌 = {(𝑆𝑆(𝑐𝑐𝑋𝑋, 𝑐𝑐𝑌𝑌),𝑇𝑇(𝑒𝑒𝑋𝑋, 𝑒𝑒𝑌𝑌),𝑇𝑇(𝑣𝑣𝑋𝑋 , 𝑣𝑣𝑌𝑌))} 

𝑋𝑋⊗𝐴𝐴𝐴𝐴 𝑌𝑌 = {(𝑇𝑇(𝑐𝑐𝑋𝑋 , 𝑐𝑐𝑌𝑌), 𝑆𝑆(𝑒𝑒𝑋𝑋, 𝑒𝑒𝑌𝑌),𝑆𝑆(𝑣𝑣𝑋𝑋, 𝑣𝑣𝑌𝑌))} 
where 𝑇𝑇 and 𝑆𝑆, respectively, are AATN and AATCN. As a result, we present Definition 5 and Theorem 
1 in the following. 

Definition 5. Consider two IVTSFVs are  𝑇𝑇1 = ��𝑐𝑐1𝑙𝑙 , 𝑐𝑐1𝑢𝑢�, �𝑒𝑒1𝑙𝑙 , 𝑒𝑒1𝑢𝑢�, �𝑣𝑣1𝑙𝑙 ,𝑣𝑣1𝑢𝑢��  and  𝑇𝑇2 =
��𝑐𝑐2𝑙𝑙 , 𝑐𝑐2𝑢𝑢�, �𝑒𝑒2𝑙𝑙 , 𝑒𝑒2𝑢𝑢�, �𝑣𝑣2𝑙𝑙 ,𝑣𝑣2𝑢𝑢��. The AA sum and product are defined as follows. 

𝑇𝑇1 ⊕𝐴𝐴𝐴𝐴 𝑇𝑇2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�
�

1− 𝑒𝑒−��− ln�1−𝑐𝑐1
𝑙𝑙𝑟𝑟��

𝛤𝛤
+�− ln�1−𝑐𝑐1𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

, �1− 𝑒𝑒−((−ln(1−𝑐𝑐1𝑢𝑢𝑟𝑟))𝛤𝛤+(−ln(1−𝑐𝑐1𝑢𝑢𝑟𝑟))𝛤𝛤)
1
𝛤𝛤

𝑟𝑟

� ,

�𝑒𝑒−��− ln�𝑒𝑒1
𝑙𝑙𝑟𝑟��

𝛤𝛤
+�− ln�𝑒𝑒2𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤,𝑒𝑒−�

�− ln�𝑒𝑒1
𝑢𝑢𝑟𝑟��

𝛤𝛤
+�− ln�𝑒𝑒2

𝑢𝑢𝑟𝑟��
𝛤𝛤
�

1
𝛤𝛤

� ,

�𝑒𝑒−��− ln�𝑣𝑣1
𝑙𝑙𝑟𝑟��

𝛤𝛤
+�− ln�𝑣𝑣2𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�(−ln(𝑣𝑣1𝑢𝑢𝑟𝑟))𝛤𝛤+(−ln(𝑣𝑣2𝑢𝑢𝑟𝑟))𝛤𝛤�
1
𝛤𝛤�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

,𝛤𝛤 ≥ 1 (1) 
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𝑇𝑇1 ⊗𝐴𝐴𝐴𝐴 𝑇𝑇2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �𝑒𝑒−��− ln�𝑐𝑐1

𝑙𝑙𝑟𝑟��
𝛤𝛤
+�−ln�𝑐𝑐2𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�(−ln(𝑐𝑐1𝑢𝑢𝑟𝑟))𝛤𝛤+(−ln(𝑐𝑐2𝑢𝑢𝑟𝑟))𝛤𝛤�
1
𝛤𝛤�

�
�

1− 𝑒𝑒−��− ln�1−𝑒𝑒1
𝑙𝑙𝑟𝑟��

𝛤𝛤
+�−ln�1−𝑒𝑒2

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

, �1 − 𝑒𝑒−((−ln(1−𝑒𝑒1
𝑢𝑢𝑟𝑟))𝛤𝛤+(−ln(1−𝑒𝑒2

𝑢𝑢𝑟𝑟))𝛤𝛤)
1
𝛤𝛤

𝑟𝑟

�

�
�

1− 𝑒𝑒−��−ln�1−𝑣𝑣1
𝑙𝑙𝑟𝑟��

𝛤𝛤
+�− ln�1−𝑣𝑣2

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

, �1 − 𝑒𝑒−((−ln(1−𝑣𝑣1
𝑢𝑢𝑟𝑟))𝛤𝛤+(−ln(1−𝑣𝑣2

𝑢𝑢𝑟𝑟))𝛤𝛤)
1
𝛤𝛤

𝑟𝑟

�
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (2) 

We may be able to specify additional operations using the AATN and AATCN. The divisions and powers of the 

IVTSFV 𝑇𝑇 = ([𝑐𝑐𝑙𝑙 , 𝑐𝑐𝑢𝑢], [𝑒𝑒𝑙𝑙 , 𝑒𝑒𝑢𝑢], [𝑣𝑣𝑙𝑙, 𝑣𝑣𝑢𝑢]) can be used to describe the operations for any real number 𝑧𝑧. 

𝑧𝑧𝑇𝑇 =

⎝

⎜
⎜
⎜
⎛ �

�
1 − 𝑒𝑒−�𝑧𝑧�− ln�1−𝑐𝑐

𝑙𝑙𝑟𝑟��
𝛤𝛤�

1
𝛤𝛤

𝑟𝑟

, �1 − 𝑒𝑒−(𝑧𝑧(−ln(1−𝑐𝑐𝑢𝑢𝑟𝑟))𝛤𝛤)
1
𝛤𝛤

𝑟𝑟

�

′

�𝑒𝑒−�𝑧𝑧�− ln�𝑒𝑒
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝑧𝑧(− ln(𝑒𝑒𝑢𝑢𝑟𝑟))𝛤𝛤�
1
𝛤𝛤� , �𝑒𝑒−�𝑧𝑧�− ln�𝑣𝑣

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝑧𝑧(− ln(𝑣𝑣𝑢𝑢𝑟𝑟))𝛤𝛤�
1
𝛤𝛤�
⎠

⎟
⎟
⎟
⎞

,𝛤𝛤 ≥ 1 (3) 

𝑇𝑇𝑧𝑧 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ �𝑒𝑒−�𝑧𝑧�− ln�𝑐𝑐

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝑧𝑧(−ln(𝑐𝑐𝑢𝑢𝑟𝑟))𝛤𝛤�
1
𝛤𝛤�

�
�

1− 𝑒𝑒−�𝑧𝑧�− ln�1−𝑒𝑒
𝑙𝑙𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

, �1 − 𝑒𝑒−(𝑧𝑧(−ln(1−𝑒𝑒𝑢𝑢𝑟𝑟))𝛤𝛤)
1
𝛤𝛤

𝑟𝑟

�

�
�

1 − 𝑒𝑒−�𝑧𝑧�− ln�1−𝑣𝑣
𝑙𝑙𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

, �1 − 𝑒𝑒−(𝑧𝑧(−ln(1−𝑣𝑣𝑢𝑢𝑟𝑟))𝛤𝛤)
1
𝛤𝛤

𝑟𝑟

�
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,𝛤𝛤 ≥ 1 (4) 

We then present Theorem 1 to demonstrate some characteristics of the AA sum and product between 
IVTSFVs 𝑇𝑇1 and 𝑇𝑇2, utilizing operations specified in Equations (1)–(4). 

Theorem 1. Let  𝑇𝑇 = ([𝑐𝑐𝑙𝑙 , 𝑐𝑐𝑢𝑢], [𝑒𝑒𝑙𝑙 , 𝑒𝑒𝑢𝑢], [𝑣𝑣𝑙𝑙 ,𝑣𝑣𝑢𝑢]) , 𝑇𝑇1 = (�𝑐𝑐1𝑙𝑙 , 𝑐𝑐1𝑢𝑢�, �𝑒𝑒1𝑙𝑙 , 𝑒𝑒1𝑢𝑢�, �𝑣𝑣1𝑙𝑙 ,𝑣𝑣1𝑢𝑢�)  and 𝑇𝑇2 =
(�𝑐𝑐2𝑙𝑙 , 𝑐𝑐2𝑢𝑢�, �𝑒𝑒2𝑙𝑙 , 𝑒𝑒2𝑢𝑢�, �𝑣𝑣2𝑙𝑙 ,𝑣𝑣2𝑢𝑢�) be three IVTSFVs, 𝑎𝑎 > 0, 𝑎𝑎1 > 0 and 𝑎𝑎2 > 0 be real numbers. Then we can write: 

𝑇𝑇1 ⊕𝐴𝐴𝐴𝐴 𝑇𝑇2 = 𝑇𝑇2 ⊕𝐴𝐴𝐴𝐴 𝑇𝑇1 

𝑇𝑇1 ⊗𝐴𝐴𝐴𝐴 𝑇𝑇2 = 𝑇𝑇2 ⊗𝐴𝐴𝐴𝐴 𝑇𝑇1 

𝑎𝑎(𝑇𝑇1 ⊕𝐴𝐴𝐴𝐴 𝑇𝑇2 = 𝑎𝑎𝑇𝑇1 ⊕𝐴𝐴𝐴𝐴 𝑎𝑎𝑇𝑇2) 

(𝑎𝑎1 + 𝑎𝑎2)𝑇𝑇 = 𝑎𝑎1𝑇𝑇 ⊕𝐴𝐴𝐴𝐴 𝑎𝑎2𝑇𝑇 

(𝑇𝑇1 ⊗𝐴𝐴𝐴𝐴 𝑇𝑇2)𝑎𝑎 = 𝑇𝑇1𝑎𝑎 ⊗𝐴𝐴𝐴𝐴 𝑇𝑇2𝑎𝑎 

𝑇𝑇𝑎𝑎1 ⊗𝐴𝐴𝐴𝐴 𝑇𝑇𝑎𝑎2 = 𝑇𝑇(𝑎𝑎1+𝑎𝑎2) 

Proof of Theorem 1. The proofs of these properties are skipped to avoid the extra length. □ 

4. The proposed averaging AOS 
We define the IVTSFAAWA, IVTSFAAOWA, and IVTSFAAHWA operators in this section and 

observe some of their fundamental characteristics. Keep in mind that we’ll be using 𝜆𝜆  for the weight 
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vector 𝜆𝜆 = (𝜆𝜆1,𝜆𝜆2,𝜆𝜆3, . . . . 𝜆𝜆𝑛𝑛)𝑇𝑇  with 𝜆𝜆ℊ ≥ 0  and ∑ 𝜆𝜆ℊ = 1𝑛𝑛
ℊ  . Further, (ℊ = 1, 2, 3, … ,𝑛𝑛)  will be used for 

indexing purposes. 

Definition 6. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be the set of IVTSFVs. Then, a IVTSFAAWA operator is a 

mapping 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑇𝑇𝑛𝑛 → 𝑇𝑇 such that 

IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, . . . .𝑇𝑇𝑛𝑛) = ⨁
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴�𝜆𝜆ℊ𝑇𝑇ℊ�. 

In Theorem 2, we demonstrate that the value acquired by aggregation is an IVTSFV as well. 

Theorem 2. Let  𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) represent the set of IVTSFVs. Consequently, the value obtained 

by the IVTSFAAWA operator following aggregate is also an IVTSFV, and 
IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, . . . .𝑇𝑇𝑛𝑛) =

⎝

⎜
⎜
⎜
⎛ �

�
1− 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− 𝑙𝑙𝑛𝑛�1−𝑐𝑐ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑐𝑐ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

� ,

�𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�𝑒𝑒ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�𝑒𝑒ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
� , �𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− 𝑙𝑙𝑛𝑛�𝑣𝑣ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�𝑣𝑣ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎞

. 
(5) 

Proof of Theorem 2. By using the induction approach, we shall prove Equation (5) as follows: 

We can write 𝑛𝑛 = 2 as 
IVTSFAAWA(𝑇𝑇1,𝑇𝑇2) = 𝜆𝜆1𝑇𝑇1 ⊕𝐴𝐴𝐴𝐴 𝜆𝜆2𝑇𝑇2 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1− 𝑒𝑒−�𝜆𝜆1�− ln�1−𝑐𝑐ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�𝜆𝜆1�− ln�1−𝑐𝑐ℊ
𝑢𝑢𝑟𝑟��𝛤𝛤�

1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

�𝑒𝑒−�𝜆𝜆1�− ln�𝑒𝑒ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝜆𝜆1�− ln�𝑒𝑒ℊ
𝑢𝑢𝑟𝑟��𝛤𝛤�

1
𝛤𝛤
�

�𝑒𝑒−�𝜆𝜆1�− ln�𝑣𝑣ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝜆𝜆1�− ln�𝑣𝑣ℊ
𝑢𝑢𝑟𝑟��𝛤𝛤�

1
𝛤𝛤
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕𝐴𝐴𝐴𝐴

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−�𝜆𝜆2�− ln�1−𝑐𝑐ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�𝜆𝜆2�− ln�1−𝑐𝑐ℊ
𝑢𝑢𝑟𝑟��𝛤𝛤�

1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

�𝑒𝑒−�𝜆𝜆2�− ln�𝑒𝑒ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝜆𝜆2�− ln�𝑒𝑒ℊ
𝑢𝑢𝑟𝑟��𝛤𝛤�

1
𝛤𝛤
�

�𝑒𝑒−�𝜆𝜆2�− ln�𝑣𝑣ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝜆𝜆2�− ln�𝑣𝑣ℊ
𝑢𝑢𝑟𝑟��𝛤𝛤�

1
𝛤𝛤
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ2
ℊ �− ln�1−𝑐𝑐ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ2
ℊ �− ln�1−𝑐𝑐ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤
′

�𝑒𝑒−�∑ 𝜆𝜆ℊ2
ℊ �− ln�𝑒𝑒ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ2
ℊ �− ln�𝑒𝑒ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
� , �𝑒𝑒−�∑ 𝜆𝜆ℊ2

ℊ �− ln�𝑣𝑣ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ2
ℊ �− ln�𝑣𝑣ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎟
⎞

 

Consequently, for 𝑛𝑛 = 2, the result of IVTSFAAWA is also an IVTSFV. Assuming that Equation (5) 
holds for 𝑛𝑛 = 𝑘𝑘, we now get 

IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, . . .𝑇𝑇𝑘𝑘)

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑐𝑐ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑐𝑐ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

,

�𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− 𝑙𝑙𝑛𝑛�𝑒𝑒ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− 𝑙𝑙𝑛𝑛�𝑒𝑒ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤
� , �𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘

ℊ �− 𝑙𝑙𝑛𝑛�𝑣𝑣ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− 𝑙𝑙𝑛𝑛�𝑣𝑣ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎟
⎞
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We must demonstrate that Equation (5). For 𝑛𝑛 = 𝑘𝑘 + 1, the following is true: 

IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, . . . .𝑇𝑇𝑘𝑘 ,𝑇𝑇𝑘𝑘+1) = �𝜆𝜆ℊ𝑇𝑇ℊ�⊕𝐴𝐴𝐴𝐴 (𝜆𝜆𝑘𝑘+1𝑇𝑇𝑘𝑘+1) 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1− 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− ln�1−𝑐𝑐ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− ln�1−𝑐𝑐ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

�𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− ln�𝑒𝑒ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− ln�𝑒𝑒ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�

�𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− ln�𝑣𝑣ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘
ℊ �− ln�𝑣𝑣ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⊕𝐴𝐴𝐴𝐴 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡�

1− 𝑒𝑒−�𝜆𝜆𝑘𝑘+1�− ln�1−𝑐𝑐𝑘𝑘+1
𝑙𝑙𝑟𝑟 ��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,

�
1 − 𝑒𝑒−�𝜆𝜆𝑘𝑘+1�− ln�1−𝑐𝑐𝑘𝑘+1

𝑢𝑢𝑟𝑟 ��𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎥
⎤

�𝑒𝑒−�𝜆𝜆𝑘𝑘+1�− ln�𝑒𝑒𝑘𝑘+1
𝑙𝑙𝑟𝑟 ��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝜆𝜆𝑘𝑘+1�− ln�𝑒𝑒𝑘𝑘+1
𝑢𝑢𝑟𝑟 ��𝛤𝛤�

1
𝛤𝛤
�

�𝑒𝑒−�𝜆𝜆𝑘𝑘+1�− ln�𝑣𝑣𝑘𝑘+1
𝑙𝑙𝑟𝑟 ��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�𝜆𝜆𝑘𝑘+1�− ln�𝑣𝑣𝑘𝑘+1
𝑢𝑢𝑟𝑟 ��𝛤𝛤�

1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘+1
ℊ �− ln�1−𝑐𝑐ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘+1
ℊ �− ln�1−𝑐𝑐ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

,

�𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘+1
ℊ �− ln�𝑒𝑒ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘+1
ℊ �− ln�𝑒𝑒ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
� , �𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘+2

ℊ �− ln�𝑣𝑣ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑘𝑘+2
ℊ �− ln�𝑣𝑣ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎟
⎞

 

which is again an IVTSFV. So, the proof is finished. 

Every AO has certain fundamental characteristics, such as boundedness, monotonicity, and idempotency. 
We demonstrate the IVTSFAAWA operator’s idempotency, boundedness, and monotonicity in 
Theorems 3 and 5, respectively, in the following. □ 

Theorem 3. (Idempotency) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be the set of IVTSFVs such that 𝑇𝑇ℊ = 𝑇𝑇 and 𝜆𝜆 

be the weight vector. Then 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇1,𝑇𝑇2, . . .𝑇𝑇𝑛𝑛) = 𝑇𝑇. 

Proof of Theorem 3. Since  𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) = 𝑇𝑇 we can acquire 

IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, . . .𝑇𝑇𝑛𝑛) =

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−��− 𝑙𝑙𝑛𝑛�1−𝑐𝑐ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−��− 𝑙𝑙𝑛𝑛�1−𝑐𝑐ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

,

�𝑒𝑒−��−𝑙𝑙𝑛𝑛�𝑒𝑒ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−��− 𝑙𝑙𝑛𝑛�𝑒𝑒ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
� , �𝑒𝑒−��−𝑙𝑙𝑛𝑛�𝑣𝑣ℊ

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−��− 𝑙𝑙𝑛𝑛�𝑣𝑣ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−��− ln�1−𝑐𝑐ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−��− ln�1−𝑐𝑐ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

,

�𝑒𝑒−��− ln�𝑒𝑒ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−��− ln�𝑒𝑒ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
� , �𝑒𝑒−��− ln�𝑣𝑣ℊ

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−��− ln�𝑣𝑣ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎟
⎞
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=

⎝

⎜
⎜
⎜
⎛ �

�
1− 𝑒𝑒−��− ln�1−𝑐𝑐ℊ

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−��− ln�1−𝑐𝑐ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

�

�𝑒𝑒−��− ln�𝑒𝑒ℊ
𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−��− ln�𝑒𝑒ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
� , �𝑒𝑒−��− ln�𝑣𝑣ℊ

𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−��− ln�𝑣𝑣ℊ
𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�
⎠

⎟
⎟
⎟
⎞

= 𝑇𝑇  

Because of this, the proof is finalized. □ 

Theorem 4. (Boundedness): Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs. Let 𝑇𝑇− = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇ℊ� 
and 𝑇𝑇+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇ℊ�. Then 𝑇𝑇− ≤ 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ 𝑇𝑇+. 

Proof of Theorem 4. Let 𝑇𝑇− = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇ℊ�  and 𝑇𝑇+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇ℊ�  be the smallest and the greatest TSFVs 

respectively. Then we have 𝑐𝑐ℊ− = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑐𝑐ℊ�, 𝑐𝑐ℊ+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑐𝑐ℊ�. Similarly, 𝑒𝑒ℊ− = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑒𝑒ℊ�, 𝑒𝑒ℊ+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑒𝑒ℊ� and 

𝑣𝑣ℊ− = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑣𝑣ℊ�, 𝑣𝑣ℊ+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑣𝑣ℊ�. Hence 

�
1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�1−𝑐𝑐ℊ−𝑟𝑟𝑙𝑙𝑟𝑟 ��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

≤
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− ln�1−𝑐𝑐ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

≤
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− ln�1−𝑐𝑐ℊ+𝑟𝑟

𝑙𝑙𝑟𝑟 ��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

. 

Similarly, 

�
𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�𝑒𝑒ℊ−𝑟𝑟𝑙𝑙𝑟𝑟 ��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

≤
�
𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�𝑒𝑒ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

≤
�
𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�𝑒𝑒ℊ+𝑟𝑟
𝑙𝑙𝑟𝑟 ��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

. 

And 

�
𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�𝑣𝑣ℊ−𝑟𝑟𝑙𝑙𝑟𝑟 ��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

≤
�
𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�𝑣𝑣ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

≤
�
𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− ln�𝑣𝑣ℊ+𝑟𝑟
𝑙𝑙𝑟𝑟 ��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

. 

Similarly, the upper value of the interval is also provable. 

Therefore 
𝑇𝑇− ≤ IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, . . .𝑇𝑇𝑛𝑛) ≤ 𝑇𝑇+. □ 

The monotonicity of the IVTSFAAWA operators is stated as follows. 

Theorem 5. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  and 𝑇𝑇ℊ𝑎𝑎 = (�𝑐𝑐ℊ𝑎𝑎 , 𝑐𝑐ℊ𝑎𝑎�, �𝑒𝑒ℊ𝑎𝑎, 𝑒𝑒ℊ𝑎𝑎�, �𝑣𝑣ℊ𝑎𝑎, 𝑣𝑣ℊ𝑎𝑎�)  be two families of 

IVTSFVs. If 𝑇𝑇ℊ ≤ 𝑇𝑇ℊ𝑎𝑎 for all. Then 

IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ IVTSFAAWA(𝑇𝑇1𝑎𝑎,𝑇𝑇2𝑎𝑎, … ,𝑇𝑇𝑛𝑛𝑎𝑎). 

The IVTSFAAOWA operator is now developed as follows. 

Definition 7. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be a set of IVTSFVs. An IVTSFAAOWA operator of 

dimension 𝑛𝑛 is a function 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑇𝑇𝑛𝑛 → 𝑇𝑇 such that 

IVTSFAAOWA(𝑇𝑇1,𝑇𝑇2, . . . .𝑇𝑇𝑛𝑛) = ⨁
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴�𝜆𝜆ℊ𝑇𝑇,𝕌𝕌(ℊ)�. 

where �𝕌𝕌(1),𝕌𝕌(2), . . . .𝕌𝕌(𝑛𝑛)� are the permutations of such that 𝕌𝕌(𝑛𝑛 − 1) ≥ 𝕌𝕌(1). 

In Theorems 6–8, we give the IVTSFAAOWA operator’s fundamental characteristics. 

Theorem 6. (Idempotency) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be the collection of IVTSFVs such that 𝑇𝑇ℊ = 𝑇𝑇. 

Then, 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇1,𝑇𝑇2, . . . .𝑇𝑇𝑛𝑛) = 𝑇𝑇. 

Theorem 7. (Boundedness) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be the set of IVTSFVs and 𝑇𝑇− = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇ℊ� and 

𝑇𝑇+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇ℊ�. Then 𝑇𝑇− ≤ 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ 𝑇𝑇+. 
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Theorem 8. (Monotonicity) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) and 𝑇𝑇ℊ𝑎𝑎 = (�𝑐𝑐ℊ𝑎𝑎 , 𝑐𝑐ℊ𝑎𝑎�, �𝑒𝑒ℊ𝑎𝑎, 𝑒𝑒ℊ𝑎𝑎�, �𝑣𝑣ℊ𝑎𝑎,𝑣𝑣ℊ𝑎𝑎�) be the 

two sets of IVTSFVs and if 𝑇𝑇ℊ ≤ 𝑇𝑇ℊ𝑎𝑎 for all ℊ. Then 

IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ IVTSFAAWA(𝑇𝑇1𝑎𝑎,𝑇𝑇2𝑎𝑎, … ,𝑇𝑇𝑛𝑛𝑎𝑎). 

Definitions 5 and 7 make it very obvious that, respectively, the IVTSFAAWA and IVTSFAAOWA 
operators aggregate IVTSFVs by merely weighting them and by doing so in an ordered manner. Weights 
so display the various aspects for both IVTSFAAWA and IVTSFAAOWA operators. No operator 
addresses this shortcoming. In order to address the issue, we will define the IVTSFAAHWA operator in 
the following manner: 

Definition 8. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs. An IVTSFAAHWA operator of 

dimension is a mapping 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝑇𝑇𝑛𝑛 → 𝑇𝑇 defined as 

IVTSFAAHWA(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = ⨁
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴�𝜆𝜆ℊ𝛤𝛤,𝕌𝕌(ℊ)�. 

where Γℊ = 𝑘𝑘𝜆𝜆ℊ𝑇𝑇ℊ the permutation I weighted IVTSFVs are represented by �Γ𝕌𝕌(1),Γ𝕌𝕌(2), … , Γ𝕌𝕌(𝑛𝑛)�, and 𝑘𝑘 is the 

essential balance coefficient. 

The IVTSFAAHWA operator shares many of the same characteristics as the IVTSFAAWA 
operator that we covered in Theorems 2–5. Nonetheless, according to Theorem 9, the IVTSFAAHWA 
operator is superior to the IVTSFAAOWA operator. 

Theorem 9. The developed IVTSFAAHWA operator is a generalization of the IVTSFAAWA and 
IVTSFAAOWA operators. 

Proof of Theorem 9. Let 𝜆𝜆 = �1
𝑘𝑘

, 1
𝑘𝑘

, … , 1
𝜆𝜆𝑛𝑛
�. By Definition 8, we have 

IVTSFAAHWA(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = 𝜆𝜆1𝛤𝛤𝕌𝕌(1) ⊕𝐴𝐴𝐴𝐴 𝜆𝜆2𝛤𝛤𝕌𝕌(2), … ,⊕𝐴𝐴𝐴𝐴 𝜆𝜆𝑛𝑛𝛤𝛤𝕌𝕌(𝑛𝑛)) =
1
𝑘𝑘
�𝛤𝛤𝕌𝕌(1) ⊕𝐴𝐴𝐴𝐴 𝛤𝛤𝕌𝕌(2), … ,⊕𝐴𝐴𝐴𝐴 𝛤𝛤𝕌𝕌(𝑛𝑛)� = 𝜆𝜆1𝑇𝑇1 ⊕𝐴𝐴𝐴𝐴 𝜆𝜆2. □ 

We can also demonstrate that IVTSFAAOWA is a unique instance of IVTSFAAHWA. 

5. The proposed geometric AOS 
In this part, we define the IVTSFAAWG, IVTSFAAOWG, and IVTSFAAHWG operators and 

observe some of their fundamental characteristics. 

Definition 9. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be a collection of IVTSFVs and 𝜆𝜆 be the weight vector. Then, 

an IVTSFAAWG operator is a function 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑇𝑇𝑛𝑛 → 𝑇𝑇 such that 

IVTSFAAWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = ⨂
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴 �𝑇𝑇ℊ

𝜆𝜆ℊ�. 

Theorem 8 states that the aggregate value of any number of IVTSFVs is also an IVTSFV, and the 
following Theorem 10 states that this is true using the procedures described above and Definition 9. 

Theorem 10. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 , 𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs. Consequently, the value that the 

IVTSFAAWG operator obtained after aggregate is also an IVTSFV, and 

IVTSFAAWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = ⨂
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴 �𝑇𝑇ℊ

𝜆𝜆ℊ� 
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IVTSFAAWG(𝑇𝑇1,𝑇𝑇2, . . . ,𝑇𝑇𝑛𝑛) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛

ℊ �− 𝑙𝑙𝑛𝑛�𝑐𝑐ℊ𝑙𝑙𝑟𝑟��
𝛤𝛤
�
1
𝛤𝛤

, 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�𝑐𝑐ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤
�

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑒𝑒ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑒𝑒ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑣𝑣ℊ𝑙𝑙𝑟𝑟��

𝛤𝛤
�
1
𝛤𝛤

𝑟𝑟

,
�

1 − 𝑒𝑒−�∑ 𝜆𝜆ℊ𝑛𝑛
ℊ �− 𝑙𝑙𝑛𝑛�1−𝑣𝑣ℊ𝑢𝑢𝑟𝑟��

𝛤𝛤�
1
𝛤𝛤

𝑟𝑟

⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. (6) 

The IVTSFAAWG operator’s idempotency, monotonicity, and boundedness are then stated. 

Theorem 11. (Idempotency) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be the set of IVTSFVs such that 𝑇𝑇ℊ = 𝑇𝑇. Then 

IVTSFAAWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = ⨂
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴 �𝑇𝑇ℊ

𝜆𝜆ℊ� = 𝑇𝑇. 

Theorem 12. (Boundedness) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs. Let 𝑇𝑇− =
𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇ℊ�𝑇𝑇+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇ℊ�. Then 

𝑇𝑇− ≤ IVTSFAAWA(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ 𝑇𝑇+. 

Theorem 13. (Monotonicity) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 , 𝑣𝑣ℊ𝑢𝑢�)  and 𝑇𝑇ℊ𝑎𝑎 = (�𝑐𝑐ℊ𝑎𝑎, 𝑐𝑐ℊ𝑎𝑎�, �𝑒𝑒ℊ𝑎𝑎, 𝑒𝑒ℊ𝑎𝑎�, �𝑣𝑣ℊ𝑎𝑎,𝑣𝑣ℊ𝑎𝑎�)  be 

two sets of IVTSFVs and 𝑇𝑇ℊ ≤ 𝑇𝑇ℊ𝑎𝑎 for all ℊ. Then 

IVTSFAAWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑇𝑇1𝑎𝑎 ,𝑇𝑇2𝑎𝑎, … ,𝑇𝑇𝑛𝑛𝑎𝑎). 

The IVTSFAAOWG operator is generated as follows. 

Definition 10. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs, an IVTSFAAOWA operator of 

dimension 𝑛𝑛 is a function 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝑇𝑇𝑛𝑛 → 𝑇𝑇 such that 

IVTSFAAOWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = ⨂
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴 �𝑇𝑇𝕌𝕌(ℊ)

𝜆𝜆ℊ �. 

where (𝕌𝕌(1),𝕌𝕌(2), … ,𝕌𝕌(𝑛𝑛)) are the permutations of (ℊ = 1, 2, 3, … ,𝑛𝑛) such that 𝕌𝕌(𝑛𝑛 − 1) ≥ 𝕌𝕌(1). 

Next, we discuss the fundamental characteristics of the IVTSFAAOWG operator in Theorems 14–
16. 

Theorem 14. (Idempotency) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�) be the set of IVTSFVs such that 𝑇𝑇ℊ = 𝑇𝑇. Then 

IVTSFAAOWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) = ⨂
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴 �𝑇𝑇𝕌𝕌(ℊ)

𝜆𝜆ℊ � = 𝑇𝑇. 

Theorem 15. (Boundedness) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs. Let 𝑇𝑇− =
𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇ℊ�𝑇𝑇+ = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇ℊ�. Then 

𝑇𝑇− ≤ IVTSFAAOWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ 𝑇𝑇+. 

Theorem 16. (Monotonicity) let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 , 𝑣𝑣ℊ𝑢𝑢�)  and 𝑇𝑇ℊ𝑎𝑎 = (�𝑐𝑐ℊ𝑎𝑎, 𝑐𝑐ℊ𝑎𝑎�, �𝑒𝑒ℊ𝑎𝑎, 𝑒𝑒ℊ𝑎𝑎�, �𝑣𝑣ℊ𝑎𝑎,𝑣𝑣ℊ𝑎𝑎�)  be 

two sets of IVTSFVs and 𝑇𝑇ℊ ≤ 𝑇𝑇ℊ𝑎𝑎 for all ℊ. Then 

IVTSFAAOWG(𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑛𝑛) ≤ IVTSFAAOWG(𝑇𝑇1𝑎𝑎,𝑇𝑇2𝑎𝑎 , … ,𝑇𝑇𝑛𝑛𝑎𝑎). 

Similar to Definition 8, we describe the IVTSFAAHG operator for the aggregate of weighted 
IVTSFVs. 
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Definition 11. Let 𝑇𝑇ℊ = (�𝑐𝑐ℊ𝑙𝑙 , 𝑐𝑐ℊ𝑢𝑢�, �𝑒𝑒ℊ𝑙𝑙 , 𝑒𝑒ℊ𝑢𝑢�, �𝑣𝑣ℊ𝑙𝑙 ,𝑣𝑣ℊ𝑢𝑢�)  be the set of IVTSFVs, an IVTSFAAHWG operator of 

dimension n is a mapping 𝐼𝐼𝐼𝐼𝑇𝑇𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝑇𝑇𝑛𝑛 → 𝑇𝑇 such that 

IVTSFAAHWG(𝑇𝑇1,𝑇𝑇2, . . . .𝑇𝑇𝑛𝑛) = ⨂
ℊ=1

𝑛𝑛
𝐴𝐴𝐴𝐴 �𝑇𝑇𝕌𝕌(ℊ)

𝜆𝜆ℊ �. 

where Γℊ = 𝑘𝑘𝜆𝜆ℊ𝑇𝑇ℊ  for  ℊ =  1, 2, 3, … ,𝑛𝑛 . The permutation of the weights of IVTSFVs are represented by 

�Γ𝕌𝕌(1),Γ𝕌𝕌(2), … , Γ𝕌𝕌(𝑛𝑛)�, and 𝑘𝑘 is the essential balance coefficient. 

6. Application of proposed AOS 
With the use of IVTSF data, we will construct a methodology in this part to apply the suggested 

operators in MAGDM and resolve a numerical example. We also examine how parameter variation 
affects behavior, and we contrast the suggested work with earlier methods already in use. 

Let 𝐼𝐼 = �𝑖𝑖1,𝑖𝑖2, … ,𝑖𝑖𝑗𝑗� represent 𝑗𝑗 selection possibilities, 𝑌𝑌 = �𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑗𝑗� represent 𝑗𝑗 attributes with 

weight vector, and 𝑄𝑄𝑘𝑘 represents 𝑘𝑘 decision-makers with weight vector 𝑤𝑤 possessing the same criteria as 
mentioned before. The IVTSF information matrix should take the form 𝐼𝐼 = (𝑠𝑠𝑘𝑘)𝑚𝑚×𝑛𝑛, where 𝑠𝑠 is the value 
of an attribute 𝑦𝑦𝑗𝑗 that the decision-maker assigns for the alternative 𝑖𝑖𝑗𝑗 in the form of IVTSFV i.e., 𝑠𝑠𝑘𝑘 =
(�𝑐𝑐𝑘𝑘𝑙𝑙 , 𝑐𝑐𝑘𝑘𝑢𝑢�, �𝑒𝑒𝑘𝑘𝑙𝑙 , 𝑒𝑒𝑘𝑘𝑢𝑢�, �𝑣𝑣𝑘𝑘𝑙𝑙 ,𝑣𝑣𝑘𝑘𝑢𝑢�) indicates the alternative’s evaluation value, where 0 ≤ 𝑐𝑐𝑘𝑘𝑢𝑢𝑟𝑟 + 𝑒𝑒𝑘𝑘𝑢𝑢𝑟𝑟 + 𝑣𝑣𝑘𝑘𝑢𝑢𝑟𝑟 ≤ 1. 

There are two types of the criteria in MAGDM. The cost attribute is one of them, while the benefit 
attribute is the other. By taking its complements, we should change the values of cost attributes into 
benefit attribute values. Therefore, we get 𝐼𝐼𝑐𝑐 = [𝐵𝐵𝑘𝑘]𝑚𝑚×𝑛𝑛 such that 

𝐵𝐵𝑘𝑘 = �
𝑠𝑠𝑘𝑘   for bene�it attribute
(𝑠𝑠𝑘𝑘)𝑐𝑐    for cost attribute 

Then, using the suggested IVTSFAAWA/IVTSFAAWG operator, we may apply the proposed 
technique to MADM as shown in the subsequent steps: 

Step 1: Investigate the IVTSFV for the value of parameter 𝑟𝑟. Consider the 𝑟𝑟 integers for which 0 ≤
𝑐𝑐𝑘𝑘𝑢𝑢𝑟𝑟 + 𝑒𝑒𝑘𝑘𝑢𝑢𝑟𝑟 + 𝑣𝑣𝑘𝑘𝑢𝑢𝑟𝑟 ≤ 1. 

Step 2: On the given IVTSF decision information, IVTSFAAWA/IVTSFAAWG operator is applied 
to find the aggregated values of each attribute individually. 

Step 3: Apply IVTSFAAWA/IVTSFAAWG operator again to aggregate the obtained values of the 
individually aggregated attributes collectively. 

Step 4: To rank the possibilities, use the score function described in Definition 3. 

Step 5: Choose the most suitable option. 

Figure 1 shows the flowchart which is helpful to understand the stepwise methodology in the 
following. 

Figure 1 shows the stepwise methodology of the MAGDM process. According to Figure 1, first step 
is to investigate the information for the value of 𝑟𝑟. Secondly, we apply IVTSFAAWA/IVTSFAAWG 
operator to aggregate the attribute individually. In third step, we aggregate the attributes collectively. 
Then we find the score values of the alternatives and then we find the ranking of the alternatives finally. 
In the following, the example 1 describes the stepwise application of the MAGDM process. 
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Figure 1. The stepwise method of MAGDM based on the IVTSF information. 

Example 1. An investment company wants to rank its projects and assess their success. To conduct the evaluation, 
they assemble a 𝐼𝐼𝑘𝑘 = (1, 2, 3) team of specialists. According to the weights 𝑤𝑤𝑒𝑒 = (0.2, 0.1, 0.7)𝑡𝑡 are given to the 
designation by the experts. The specialists assess the performance using a few performance metrics (attributes), 
including (1) rate of return denoted by 𝒞𝒞1, (2) time to completion denoted by 𝒞𝒞2, (3) total cost of investment denoted 
by 𝒞𝒞3, and (4) client feedback 𝒞𝒞4. These qualities are given the following weights 𝑤𝑤𝑎𝑎 = (0.2, 0.1, 0.35, 0.25)𝑡𝑡 only 
four projects 𝑎𝑎ℊ = (ℊ = 1, 2, 3, 4) are selected for the next round of examination.  

The following Tables 1–3 present the decision matrices offered by experts. 

Table 1. Decision matrix from expert I. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.46 0.6 0.4 0.7 0.3 0.8 0.2 0.8 0.24 0.48 0.29 0.52 

𝓒𝓒𝟐𝟐 0.4 0.7 0.34 0.9 0.48 0.6 0.3 0.46 0.45 0.9 0.39 0.76 

𝓒𝓒𝟑𝟑 0.55 0.6 0.54 0.61 0.5 0.65 0.33 0.59 0.34 0.76 0.49 0.65 

𝓒𝓒𝟒𝟒 0.65 0.73 0.6 0.65 0.34 0.76 0.37 0.7 0.11 0.78 0.44 0.66 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.1 0.6 0.33 0.4 0.34 0.4 0.34 0.46 0.3 0.45 0.32 0.64 

𝓒𝓒𝟐𝟐 0.2 0.5 0.54 0.6 0.24 0.29 0.24 0.64 0.34 0.64 0.42 0.67 

𝓒𝓒𝟑𝟑 0.3 0.4 0.23 0.36 0.5 0.67 0.53 0.7 0.54 0.75 0.53 0.75 

𝓒𝓒𝟒𝟒 0.4 0.7 0.54 0.6 0.45 0.7 0.53 0.6 0.64 0.84 0.35 0.74 

Table 2. Decision matrix from expert II. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.46 0.53 0.21 0.8 0.76 0.78 0.5 0.56 0.42 0.7 0.3 0.87 

𝓒𝓒𝟐𝟐 0.34 0.66 0.7 0.85 0.76 0.88 0.46 0.61 0.29 0.9 0.1 0.33 

𝓒𝓒𝟑𝟑 0.45 0.59 0.43 0.59 0.43 0.55 0.32 0.4 0.51 0.65 0.9 0.91 
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Table 2. (Continued). 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟒𝟒 0.44 0.5 0.48 0.57 0.21 0.9 0.55 0.79 0.58 0.76 0.34 0.44 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.55 0.6 0.34 0.55 0.5 0.67 0.5 0.67 0.32 0.37 0.5 0.57 

𝓒𝓒𝟐𝟐 0.6 0.71 0.34 0.6 0.35 0.64 0.35 0.64 0.52 0.74 0.24 0.53 

𝓒𝓒𝟑𝟑 0.15 0.25 0.65 0.71 0.32 0.53 0.32 0.53 0.24 0.73 0.4 0.47 

𝓒𝓒𝟒𝟒 0.26 0.76 0.35 0.43 0.42 0.53 0.42 0.53 0.26 0.74 0.5 0.57 

Table 3. Decision matrix from expert III. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.3 0.49 0.56 0.65 0.12 0.24 0.6 0.77 0.6 0.67 0.57 0.6 

𝓒𝓒𝟐𝟐 0.53 0.65 0.62 0.78 0.33 0.5 0.32 0.36 0.3 0.68 0.45 0.55 

𝓒𝓒𝟑𝟑 0.29 0.9 0.67 0.75 0.44 0.49 0.54 0.69 0.2 0.5 0.64 0.7 

𝓒𝓒𝟒𝟒 0.37 0.56 0.22 0.9 0.32 0.66 0.66 0.9 0.35 0.6 0.22 0.39 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.55 0.6 0.34 0.55 0.5 0.67 0.5 0.67 0.32 0.37 0.5 0.57 

𝓒𝓒𝟐𝟐 0.6 0.71 0.34 0.6 0.35 0.64 0.35 0.64 0.52 0.74 0.24 0.53 

𝓒𝓒𝟑𝟑 0.15 0.25 0.65 0.71 0.32 0.53 0.32 0.53 0.24 0.73 0.4 0.47 

𝓒𝓒𝟒𝟒 0.26 0.76 0.35 0.43 0.42 0.53 0.42 0.53 0.26 0.74 0.5 0.57 

6.1. IVTSFAAWA operator 
In this sub-section, we will do MAGDM with the help of the IVTSFAAWA operator. 

Step 1: Look at the  𝑟𝑟  parameter’s value for IVTSF information. Consider the  𝑟𝑟  integers for 
which 0 ≤ 𝑐𝑐𝑘𝑘𝑟𝑟 + 𝑒𝑒𝑘𝑘𝑟𝑟 + 𝑣𝑣𝑘𝑘𝑟𝑟 ≤ 1 which is 3 here. 

Step 2: On the IVTSF decision information when the total IVTSF preference values are  𝐵𝐵𝑘𝑘 
and  𝐵𝐵′𝑘𝑘 = ([𝑐𝑐𝑘𝑘′ , 𝑐𝑐𝑘𝑘′ ], [𝑒𝑒𝑘𝑘′ , 𝑒𝑒𝑘𝑘′ ], [𝑣𝑣𝑘𝑘′ ,𝑣𝑣𝑘𝑘′ ]) , use the IVTSFAAWA operator as provided in Table 4 in the 
following. 

Table 4. Individual preference values by IVTSFAAWA. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.3 0.49 0.56 0.65 0.12 0.24 0.6 0.77 0.6 0.67 0.57 0.6 

𝓒𝓒𝟐𝟐 0.53 0.65 0.62 0.78 0.33 0.5 0.32 0.36 0.3 0.68 0.45 0.55 

𝓒𝓒𝟑𝟑 0.29 0.9 0.67 0.75 0.44 0.49 0.54 0.69 0.2 0.5 0.64 0.7 

𝓒𝓒𝟒𝟒 0.37 0.56 0.22 0.9 0.32 0.66 0.66 0.9 0.35 0.6 0.22 0.39 
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Table 4. (Continued). 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.55 0.6 0.34 0.55 0.5 0.67 0.5 0.67 0.32 0.37 0.5 0.57 

𝓒𝓒𝟐𝟐 0.6 0.71 0.34 0.6 0.35 0.64 0.35 0.64 0.52 0.74 0.24 0.53 

𝓒𝓒𝟑𝟑 0.15 0.25 0.65 0.71 0.32 0.53 0.32 0.53 0.24 0.73 0.4 0.47 

𝓒𝓒𝟒𝟒 0.26 0.76 0.35 0.43 0.42 0.53 0.42 0.53 0.26 0.74 0.5 0.57 

Table 4 shows the aggregated values of information provided in Tables 1–3 with the IVTSFAAWA 
operator. 

Step 3: To derive the total preference values, all preference values are combined. 

Table 5 shows the aggregated values of the attributes collectively with the help of the IVTSFAAWA 
operator. 

Table 5. Collective preference values by IVTSFAAWA. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.5145 0.7866 0.3566 0.6186 0.3694 0.6887 0.4515 0.6877 0.3307 0.5984 0.2770 0.5388 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.5494 0.6619 0.3905 0.5025 0.3761 0.5131 0.491 0.6816 0.3672 0.5634 0.372 0.6076 

Step 4: To rank the possibilities, use the score function described in Definition 3. 

𝑠𝑠𝑐𝑐(𝑎𝑎1) = 0.33568, 𝑠𝑠𝑐𝑐(𝑎𝑎2) = 0.291432, 𝑠𝑠𝑐𝑐(𝑎𝑎3) = 0.361207 and 𝑠𝑠𝑐𝑐(𝑎𝑎4) = 0.295855 

Step 5: Choose the most suitable option. 

Since, sc(a3) > 𝑠𝑠𝑐𝑐(a1) > 𝑠𝑠𝑐𝑐(a4) > 𝑠𝑠𝑐𝑐(a2), 𝑎𝑎3 ≻ 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎2, where “≻” denotes superior to. Thus 
𝑎𝑎4 is the best alternative. 

Hence, by using the IVTSFAAWA operator we ranked the project success and found that the 
project 𝑎𝑎3 is the most successful project. Now, we rank the project success by using the IVTSFAAWG 
operator. 

6.2. IVTSFAAWG operator 
In this sub-section, we will do decision-making with the help of the IVTSFAAWG operator. 

Step 1: Look at the  𝑟𝑟  parameter’s value for IVTSF information. Consider the  𝑟𝑟  integers for 
which 0 ≤ 𝑐𝑐𝑘𝑘𝑟𝑟 + 𝑒𝑒𝑘𝑘𝑟𝑟 + 𝑣𝑣𝑘𝑘𝑟𝑟 ≤ 1 which is 3 here. 

Step 2: On the IVTSF decision information when the total IVTSF preference values are 𝐵𝐵𝑘𝑘 
and 𝐵𝐵′𝑘𝑘 = ([𝑐𝑐𝑘𝑘′ , 𝑐𝑐𝑘𝑘′ ], [𝑒𝑒𝑘𝑘′ , 𝑒𝑒𝑘𝑘′ ], [𝑣𝑣𝑘𝑘′ ,𝑣𝑣𝑘𝑘′ ]), use the IVTSFAAWG operator such that given in Table 6. 
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Table 6. Individual preference values by IVTSFAAWG. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.7575 0.3443 0.6521 0.5490 0.6684 0.5195 0.6 0.77 0.6 0.5666 0.6476 0.5237 

𝓒𝓒𝟐𝟐 0.8215 0.3463 0.433 0.3905 0.8748 0.4148 0.6763 0.3408 0.566 0.4707 0.5763 0.4920 

𝓒𝓒𝟑𝟑 0.585 0.3739 0.5023 0.4577 0.6876 0.845 0.8582 0.2408 0.351 0.5918 0.6514 0.4479 

𝓒𝓒𝟒𝟒 0.8486 0.494 0.7756 0.5220 0.7398 0.3843 0.5791 0.3516 0.6789 0.469 0.53690 0.41330 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.6383 0.376 0.4606 0.4620 0.5385 0.6791 0.8160 0.7575 0.3443 0.6521 0.5490 0.6684 

𝓒𝓒𝟐𝟐 0.6843 0.2844 0.599 0.3251 0.579 0.3758 0.6330 0.8215 0.3463 0.433 0.3905 0.8748 

𝓒𝓒𝟑𝟑 0.5954 0.3050 0.6068 0.4715 0.6689 0.5201 0.717 0.5850 0.3739 0.5023 0.4577 0.6876 

𝓒𝓒𝟒𝟒 0.6207 0.3652 0.6899 0.6226 0.7714 0.6226 0.7217 0.8486 0.4945 0.7756 0.5220 0.7398 

Table 6 shows the aggregated values of the attributes provided in Tables 1–3 with the help of the 
IVTSFAAWG operator. 

Step 3: To derive the total preference values, all preference values are combined. 

Table 7 shows the aggregated values of attributes collectively with the help of the IVTSFAAWG 
operator. 

Table 7. Collective preference values by IVTSFAAWG. 

 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.5839 0.6010 0.8148 0.6456 0.7980 0.3780 0.5363 0.5068 0.7940 0.7750 0.7750 0.2672 

 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 

 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 𝒄𝒄𝒍𝒍 𝒄𝒄𝒖𝒖 𝒆𝒆𝒍𝒍 𝒆𝒆𝒖𝒖 𝒗𝒗𝒍𝒍 𝒗𝒗𝒖𝒖 

𝓒𝓒𝟏𝟏 0.4545 0.5541 0.6238 0.4825 0.6384 0.3271 0.5604 0.5476 0.6989 0.617 0.7560 0.5839 

Step 4: To rank the possibilities, use the score function described in Definition 3. 

𝑠𝑠𝑐𝑐(𝑎𝑎1) =0.008402732, 𝑠𝑠𝑐𝑐(𝑎𝑎2) = 0.0270360614, 𝑠𝑠𝑐𝑐(𝑎𝑎3) = 0.0603637788 and 𝑠𝑠𝑐𝑐(𝑎𝑎4) = 0.060868. 

Step 5: Choose the most suitable option. 

Since, sc(𝑎𝑎4) > 𝑠𝑠𝑐𝑐(𝑎𝑎3) > 𝑠𝑠𝑐𝑐(𝑎𝑎2) > 𝑠𝑠𝑐𝑐(𝑎𝑎1) , 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ , where “≻ ” denotes superior to. 
Thus, 𝑎𝑎4 is the best alternative. 

It is noticeable that the score values produced above show the order in which all alternatives are 
ranked. By using the IVTSFAAWA and IVTSFAAWG operators, we determine that the alternatives 𝑎𝑎3 
and 𝑎𝑎4  are the best alternatives among the projects that were shortlisted. Additionally, we see that 
whereas the IVTSFAAWG operator is based on the geometric average, the IVTSFAAWA operator is 
based on the arithmetic mean and provides the average of group judgment. To test the applicability of 
these two AOs, we apply them. The IVTSFAAOWA (IVTSFAAOWG) and IVTSFAAHA 
(IVTSFAAHG) operators can also be used to obtain the corresponding findings. When the sequence of 
the information or its weight is significant, these four different types of operators stand out. 
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We shall discuss the implications of the parameters 𝛤𝛤  and 𝑟𝑟  on the described operations in the 
subsection that follows. 

6.3. Impact of parameter 𝜞𝜞 
In our numerical example, the parameter 𝛤𝛤’s value is 3, as can be seen. The values of parameter 𝛤𝛤 

can, however, be changed by the decision-maker. By modifying the value of 𝛤𝛤 , the hierarchy of the 
options can be modified. The following section shows how the IVTSFAAWA and IVTSFAAWG 
operators, as given in Table 8 show the ranking order of the alternatives. 

Table 8 shows the ranking positions of the alternatives according to parameter 𝛤𝛤 obtained by the 
IVTSFAAWA and IVTSFAAAWG operators. Be aware that the IVTSFAAWA operator selects 𝑎𝑎3 as 
the best option when 𝛤𝛤 = 3. However, if we increase the value of the parameter 𝛤𝛤 to be more than 3, the 
best option is 𝑎𝑎3 . Until 𝛤𝛤 = 51 , we keep track of the ranking order. After 𝛤𝛤 = 3 , the IVTSFAAWA 
operator produces identical results. It should be observed that the IVTSFAAWA fails and does not 
produce the desired outcome when we use any even 𝛤𝛤. Therefore, we advise using any odd number higher 
than 3. Table 8 also displays the behavior of changing the values of 𝛤𝛤 to generate different ranking orders 
of alternatives and preference orders using the IVTSFAAWG operator. After 𝛤𝛤 = 3, we observe that the 
ranking of alternatives remains stable. The best alternative is 𝑎𝑎4, which is obtained when 𝛤𝛤 = 3. The best 
alternative is 𝑎𝑎3 , however, if we vary the amount of 𝛤𝛤  and use 𝛤𝛤  bigger than 3, we still get the same 
optimal alternative when we use 𝛤𝛤 ≥ 5. It should be observed that the IVTSFAAWG operator fails and 
produces no results when we utilize an even 𝛤𝛤. As a result, we advise choosing an odd number of 𝛤𝛤 ≥ 5. 
We show the variance in ranking orders of options in Figure 2. 

Table 8. Variation of ranking in IVTSFAAWA and IVTSFAAWG with 𝛤𝛤. 

𝜞𝜞 IVTSFAAWA IVTSFAAWG 

3 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 ≻ 𝑎𝑎4 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 

5 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

7 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

9 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

11 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

21 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

25 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

35 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

41 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

45 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

49 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

51 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 

In Figure 2, we display how the IVTSFAAWA operator’s ranking orders of alternatives change as 𝛤𝛤 
values are changed. Because the IVTSFAAWA operator does not produce results for even values of 𝛤𝛤, 
we plot the graph from 𝛤𝛤 = 3 to 𝛤𝛤 = 51 without using any even 𝛤𝛤. 
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Figure 2. Ranking of the IVTSFAAWA operator with the values of the parameter 𝛤𝛤. 

Figure 2 shows the variation of the ranking results obtained at the different values of 𝛤𝛤 discussed 
above in Table 8. The interesting ranking can be observed in Figure 2. Similarly, the ranking obtained 
by the IVTSFAAWG operator in Table 8 can be plotted graphically. 

Figure 3 shows the tendency of the ranking of the alternatives produced by the IVTSFAAWG 

operator as discussed in Table 8. Use the IVTSFAAWA operator in Table 9 to compare options. We 
explore the characteristics of the ranking trends of alternatives by adjusting the values of 𝑟𝑟  in the 
IVTSFAAWG operator. This is the same as how the IVTSFAAWA operator lets its output results change. 

 
Figure 3. Ranking of the IVTSFAAWG operator with the values of the parameter Γ. 

Table 9. Variation of ranking in IVTSFAAWA and IVTSFAAWG with 𝑟𝑟. 

𝒓𝒓 IVTSFAAWA IVTSFAAWG 

3 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎1 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 ≻ 𝑎𝑎1 

4 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 ≻ 𝑎𝑎4 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 

5 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 ≻ 𝑎𝑎1 

6 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 ≻ 𝑎𝑎4 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 ≻ 𝑎𝑎1 

7 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 

8 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 

9 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 

10 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 ≻ 𝑎𝑎3 

15 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 

20 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎4 ≻ 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 

30 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 

50 𝑎𝑎1 ≻ 𝑎𝑎2 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎3 



Journal of  AppliedMath 2023; 1(2): 79. 

18 

6.4. The impact of 𝒓𝒓 
The values of the parameter 𝑟𝑟 are changed in the next section, and the reordering of the options is 

observed. We utilize 𝑟𝑟 values ranging from 3 to 50, and for each number we achieve the same ordering 
of the options. 𝑎𝑎4 remains the optimal solution for all values of 𝑟𝑟. Moreover, it should be noted that when 
𝑟𝑟 is appreciably large, the score values of alternatives approach zero. We demonstrate several ranking 
order alternatives. Table 9 shows the effects of the parameter 𝑟𝑟  obtained by the IVTSFAAWA and 
IVTSFAAWG operators. We variate the values of the 𝑟𝑟 up to 51 and obtained interesting results from 
both developed operators. 

6.5. Comparison with other operators 
Given that Ullah et al.[7] constructed AOs in an IVTSFS context employing “Hamacher TN and 

TCN” and explored potential implementation in the assessment of robot performance, Hussain et al.[40] 
proposed AOs IVTSFS adopting Frank TN and TCN. We compare the order in which the AOs were 
ranked with the operators we suggested for IVTSFAAWA and IVTSFAAWG. The IVTSFAAWA and 
IVTSFAAWG operators should be preferred given that the AATN and TCN are more flexible than the 
TN and TCN that were used in earlier AOs (Table 10). The following are some intriguing findings we’ve 
made: 
1) Each of the recommended operators in this article is based on two parameters known as 𝛤𝛤 and 𝑟𝑟, 

and because of this, it is up to the decision-makers to determine what values these parameters should 
be given. 

2) By utilizing the (generic) IVTSF weighted average (IVTSFWA) AOs, we determine that 𝑎𝑎1 is the 
optimal alternative. Once the IVTSFDWA and IVTSFAAWA are applied. As a result, 𝑎𝑎3 is the 
finest choice. When we use IVTSFDWG and IVTSFWG operators, we obtain the optimal 
alternative 𝑎𝑎1. 

3) Using the IVTSFAAWG AOs, we can produce 𝑎𝑎4 is the best alternative. 

Table 10. Comparison with other operators. 

IVTSFDWG 𝒂𝒂𝟏𝟏 ≻ 𝒂𝒂𝟒𝟒 ≻ 𝒂𝒂𝟐𝟐 ≻ 𝒂𝒂𝟑𝟑 

IVTSFWG 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎2 

IVTSFAAWG 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 

IVTSFDWA 𝑎𝑎3 ≻ 𝑎𝑎4 ≻ 𝑎𝑎2 ≻ 𝑎𝑎1 

IVTSFWA 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎3 ≻ 𝑎𝑎2 

IVTSFAAWA 𝑎𝑎3 ≻ 𝑎𝑎1 ≻ 𝑎𝑎4 ≻ 𝑎𝑎2 

Figures 4 and 5 depict the comparison between the score values achieved employing the AOs stated 
in this section. 
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Figure 4. Displays the comparison between the developed IVTSFAAWG operator and traditional AOs. 

In Figure 4, the comparison of different geometric operators with existing is displayed graphically. 
We can observe the ranking of the alternatives in Figure 4. It is cleared that the ranking is linear in case 
of each operator. 

 
Figure 5. Displays the comparison between the developed IVTSFAAWA operator and existing AOs. 

In Figure 5, the comparison of different geometric operators with existing is displayed graphically. 
We can observe the ranking of the alternatives in Figure 5. It is cleared that the ranking is linear in case 
of each operator. 

7. Conclusion 
In this study, we started by outlining some fundamental about IVTSFS, AATN, and AATCN. Then, 

we introduced four different AO types: IVTSFAAWG, IVTSFAAOWG, IVTSFAAHWG, and 
IVTSFAAWG operators. We demonstrated several intriguing characteristics of these AOs, such as 
monotonicity, idempotency, and boundedness. With the aid of an example, we also used the 
IVTSFAAWA and IVTSFAAWG operators to resolve MADM problems. By altering the values of the 𝑟𝑟 
and 𝛤𝛤 involved parameters, we further analyzed how these operators behave. We compared the suggested 
operators to the IVTSFWA, IVTSFHWA, and IVTSFEHWA operators as well as the IVTSFWG, 
IVTSFHWG, and IVTSFEHWG operators. The findings include the results below. 
1) First off, thanks to AATN and AATCN, due to which, the IVTSFAAWA and IVTSFAAWG 

operators are more adaptable than the other equivalent operators. 
2) Additionally, by varying the values of the two parameters 𝑟𝑟  and  𝛤𝛤 , the IVTSFAAWA and 

IVTSFAAWG operators provide a distinct ranking of possibilities. 
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3) The IVTSFAAWG operator based on the weighted geometric mean of alternatives typically 
provides a superior option to obtain the best alternative than the IVTSFAAWA operator based on 
the weighted average of the alternatives. 

We intend to work on the theory and applications of Archimedean norms Wang and Garg[41] inside 
the framework of IVTSFSs shortly. We also intend to investigate how the proposed works might be 
applied in the manufacturing sector[42] and to the framework defined in the studies of Ullah[43] and 
Mahmood[44]. The current work can also be generalized for the frameworks defined in the studies of Al-
Quran[45] and Al-Quran[46]. 
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