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ABSTRACT: Quantum computers are recently being developed in wide 

varieties, but the computational results from quantum computing 

have been largely confined to constructing artificial assignments. The 

applications of  quantum computers to real-world problems are still an 

active area of  research. However, challenges arise when the limits of  

scale and complexity in biological problems are pushed, which has 

affected drug discovery. The fast-evolving quantum computing 

technology has transformed the computational capabilities in drug 

research by searching for solutions for complicated and tedious 

calculations. Quantum computing (QC) is exponentially more efficient 

in drug discovery, treatment, and therapeutics, generating 

profitable business for the pharmaceutical industry. In principle, it 

can be stated that quantum computing can solve complex problems 

exponentially faster than classical computing. Here it is needed to 

mention that QC will not be able to take on every task that classical 

computers perform—at least not now. It may be classical and 

quantum-coupled computational technologies combined with machine 

learning (ML) and artificial intelligence (AI) will solve each task in the 

future. This review is an overview of  quantum computing, which may 

soon revolutionize the pharmaceutical industry in drug discovery. 
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1. Introduction 
The fundamentals of  the pharmaceutical industry are to formulate drug designs to treat or cure 

diseases. In 2020, the FDA has approved only 53 drugs, which is still higher in number than within the 
past 20 years[1]. It shows that there is a distinct lack of  “hit” drugs in these years. The drugs with their 
exceptional therapeutic properties are used for 93% of  global net drug spending growth as compared to 
small molecules in recent years[2]. Drug development takes approximately 13 and more years with an 
exceptionally high budget (£1bn) to develop a new drug[3]. Moreover, with many identified medicines in 
the lab, only one drug might be able to ever reach patients, while the others fail along the way. Once the 
search for a potential drug is over, it is developed to provide maximum benefit with minimal side effects 
for patients. Computational resources made the drug discovery process faster so that it could produce 
more effective drugs with fewer side effects in an accurate manner. 

Quantum computers use the laws of  quantum mechanics, such as superconducting loops 
(microwave radiation) or ions drifting in ion traps within electromagnetic fields (lasers). QC uses 
quantum behaviour to solve the problems. This “quantum advantage” helps and motivates 
organizations to solve problems that cannot be realistically solved by classical computers. So “universal 
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quantum computing” is applied with large fault-tolerant quantum computers or hybrid 
classical/quantum computers to do a wide range of  computational tasks[3]. 

Quantum Information Science and Technology (QIST) has been used to transform and develop 
novel algorithms using machine learning techniques for technological developments. Quantum 
computers have more advantageous features than classical systems for molecular simulations of  drug 
design and discovery[4]. Cloud computing, AI, and ML are using quantum computing to carry out 
efficient and remarkably less expensive calculations. Quantum algorithms provide exponential speedups 
as compared to their classical counterparts[5]. Modern quantum calculations are finding approximate 
solutions with the following methods, such as Ab initio methods[6], semi-empirical methods[7], density 
functional methods[8], density matrix methods[9], algebraic methods[10], quantum Monte Carlo 
methods[11], and dimensional scaling methods[12]. These systems are accurate only for larger systems and 
are quite expensive. It is anticipated that the exponential speedup of  quantum computers can complete 
the simulation tasks within only polynomial amount of  time. Quantum computers use “qubits”, unlike 
classical computers, which use “bits”. Qubits can either be on or off, or both (superposition). The 
difference between classical bit and qubit is given in Table 1. Quantum gates operate on a system of  
qubits. Qubits and quantum gates are found to be the basic components of  any algorithm, as the basic 
components of  programming language are variables and functions. The combination of  great speed 
with probabilistic solutions to multiple calculations with higher accuracy at one time fits well in 
applications such as optimization, simulation of  chemicals, and AI. Today, quantum computers are 
known as “Noisy Intermediate Scale Quantum” (NISQ), which have limited computational resources. 
NISQ assists with the first level of  drug discovery, which involves molecular simulations, wave function 
optimization, and ML. It is observed that even smaller simulations result in accurate predictions of  
potential drugs long before clinical trials, with reduced time and cost[4]. 

Table 1. Comparison between a classical bit and qubit. 

Classical bit Qubit 

State 0 or 1 |0⟩, |1⟩, or superposition. 
Measurement does not change the state of  the bit Measurement changes the system. 
Deterministic result Quantum state itself  remains the same and it is deterministic. 

Different results only occur with measurement when the quantum 
state collapses. 

Can make a copy of  bi (eavesdrop) Cannot clone the qubit (security). 
One number for a string bit A qubit can represent a state vector with 2 degrees of  freedom; thus, 

it can store one complex number. 

2. Methods 
The pharmaceutical industry has developed molecular formulations to treat diseases in the form of  

drugs. The industry has made huge investments, which is more than 20% of  total R&D industries at the 
global level[3]. Various computational chemistry’s digital tools with AI have been opted to predict and 
simulate the structures, physicochemical and biological properties, pharmacokinetics, and 
pharmacodynamics of  drugs accurately. But either accuracy or speed are affected; force fields are 
quick but offer generalized answers, whereas the exact solution O(n!) is called factorially, n being the 
number of  electrons. These computational tools are not easily manageable by standard computers, and 
for atomic-level calculations, the methods used are not sufficiently accurate. QC can accurately predict 
the interactions at the atomic level. A quantum algorithm (quantum annealing) can shift the probability 
distribution of  the superimposed states so that the state or states corresponding to the global 
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optimum become intensely probable on measurement[13]. Massive parallelism is an advantage of  QC 
that can be attained by modelling many solutions simultaneously. As expected, the number of  
simultaneously measured solutions doubles with the addition of  each additional quantum bit, or qubit. 
This allows for exponential scaling, which is not achieved by classical computers. The exponential 
scaling helps to search for and solve certain classes of  problems. 

Two computational methodologies have been used for drug discovery, which are (a) 
annealing-based quantum computation and (b) gate-based quantum computation. The larger problems 
are easily handled by the quantum computers. Currently, MD simulations and DFT approaches with 
computer-assisted drug discovery (CADD) are used to predict the behaviour of  drug molecules. 
Quantum computers are used to shorten the screening time and make the CADD approach more 
effective so that the molecular properties of  drugs can be predicted accurately. The modelling process of  
target-drug interaction can also be predicted in an effective way, as QC is capable of  searching multiple 
possible target structures from virtual screening from compound libraries in parallel[14]. The limitation 
of  classical approaches is the structural flexibility of  the target molecule due to a lack of  limited time 
and resources, which reduces the chance of  identifying the best drug candidates. Improvements in QC 
have substantially decreased the requirements for simulation. For example, in 2017, 200 million physical 
qubits at a 10–3 error rate were reduced to 4 million physical qubits in 2020[3]. Several new theoretical 
tools have been developed to perform the simulations. Statistical methods and ML are used in drug 
discovery, estimation of  molecular and ADMET properties of  drugs, and prediction of  
protein-ligand binding[13]. Deep neural networks are used to predict molecular interactions[14], secondary 
structure[15] and 3D protein structures[16] in structural biology. These computationally intensive models 
with general-purpose graphical processing units (GPUs) and exponentially faster algorithms speed up 
the calculations to train ML models. These ML models and various algorithms of  QC are used for 
applications in drug delivery. Variational quantum eigen-solver (VQE) methods enhanced with 
sophisticated state preparation methods and measurement reduction techniques are used to calculate 
the binding affinity between small active pharmaceutical ingredients (APIs) and a target receptor. Many 
quantum ML algorithms are used for quadratic or exponential speedup processes[16]. 

Several techniques are used to extract information from unlabelled datasets in unsupervised 
learning. Various ML tools are applied in next-generation sequencing (NGS) to extract and analyse the 
output data of  biomolecules[17] or annotate genomes[18]. Principal component analysis (PCA) is used to 
reduce the high-dimensionality datasets of  RNA microarray and mass spectrometry (MS) data[19] by 
searching for linear combinations of  features that maximize the variance[20]. In quantum computers, 
quantum algorithms are used to build the covariance matrix of  the data and use quantum phase 
estimation[20] to compute the eigenvectors in an exponential time span[21–24]. 

Supervised learning is used to predict the binding affinity of  a ligand to a protein[21] and 
computer-aided disease diagnosis (CADD)[25]. Gaussian process (GP) regression[26] is used to build 
surrogate models, MD simulations, and predictions of  the drug properties of  quantitative 
structure-activity relationship (QSAR) models[27,28]. Another statistical method, hidden Markov models 
(HMM), is used for computational gene annotation and sequence alignment[27]. ML[28] and deep 
learning (DL) have been used for accurate contact prediction in proteins[17], precision medicine[29], 
molecular design[30], and simulation[30,31]. QC is extended to biomolecular[32] and biological systems as 
the quantum annealing (QA) method is used to investigate the coarse-grained folding landscape of  a 
six-amino acid peptide within a 2D lattice framework[33]. QA is used to search for the transcription 
factor binding of  DNA sequence[34]. Quantum effects have the potential to accurately model energy 



Information System and Smart City 2023; 3(1): 294. 

4 

transport (in photosynthetic complexes)[35–39] and electron transport (redox sites of  metalloproteins)[40] 
in biological molecules[41]. Various combination methodologies are used for understanding the function 
of  the brain at the genetic level with global structural/functional networks[29]. The initial step in genetics 
and genomics is the sequence matching of  nucleotides and amino acids to the reference databases, for 
which various algorithms such as Needleman and Wunsch[42], Smith and Waterman[43] are used. In 
genomic read mapping, algorithms such as the Burrows-Wheeler transform are efficiently used to 
perform DNA sequence alignments[44]. The seed-based approaches[45] are used to confront the mapping 
of  RNA reads to the boundaries between exons separated by large genomic distances. Hidden quantum 
Markov models (HQMMs)[46–48] can simulate classical HMMs on quantum circuits[47], as well as develop 
model space beyond classical HMMs[45]. Possible models such as Bayesian Networks, Boltzmann 
Machines[49], and variational autoencoders (VAEs) are used to predict genetic risk for particular traits, 
which can be partitioned across “intermediate” phenotypes, leading to insights into disease etiology[50–

52]. QC simulated systems[53] are used to study the active sites of  many enzyme-transition metal 
interactions[54]. 

These algorithms are useful to design drug[55–57], supervised learning (e.g., protein binding affinity), 
unsupervised learning (e.g., genome clustering), and generative modelling (e.g., de novo drug design). 
The problems related to protein structure prediction are now being tackled by gate-based quantum 
computers, as earlier optimisation studies were carried out by annealing methods[58]. The classical 
algorithms are able to provide solutions for the sampling of  the conformation space of  small proteins, 
whereas they cannot handle the intrinsic NP-hard complexity of  the problem, even if  it is reduced. 

QC can benefit the entire value chain, but its prime focus lies in the research and development 
process. The pharma value chain includes research and development, production, logistics and supply 
chain, and access to the commercial market and patients. The research includes the understanding of  
disease and developing the hypothesis, target identification, hit generation and identification, lead 
generation, optimization of  drug candidates with ADMET prediction, and dose and solubility 
optimization. ML and AI techniques are used to find structure-property relationships and potentially 
predict the 3D structure of  target proteins. QC is able to create novel types of  drug-candidate libraries 
with peptides and antibodies. An advanced-level approach by QC can be used to automatically screen 
structurally relevant targets against drug-like molecules via next-generation sequencing (NGS) 
approaches. QC increases the modelling accuracy of  target-drug interactions, reduces the number of  
development cycles, and increases the quality of  the optimized lead compounds. New molecules are 
synthesized, and their physicochemical and biological properties are predicted in a faster manner. QC 
can be used to reliably identify the 3D structure of  targets. Drugs are often developed without even 
knowing the structure of  a protein, accepting the risk of  a trial-and-error approach because of  their high 
commercial uses and profits in the pharma business. Researchers “Demis Hassabis” and “John Jumper” 
were recognized for creating the AI tool, which has easily predicted the 3D structures of  almost every 
known protein[59]. The prediction of  template-free protein structure is one major problem in molecular 
engineering and drug discovery. The folding funnel hypothesis assumes that the native state of  a protein 
corresponds to its free energy minimum under the solution conditions usually encountered in cells[60,61], 
although many counterexamples exist. The quantum computing focus is on the protein lattice model, 
where the peptide can be modelled by self-avoiding walking on a lattice[60]. The residue is correlated to 
each node of  the lattice, and the energy function is contributed by the interactions between spatial 
neighbours. Two main model schemes are used for protein structure prediction, among several other 
models. These are hydrophobic-polar model[62] (considering only two classes of  amino acids) and 
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Miyazawa and Jernigan[63] (containing interactions for every pair of  residues). These models provide 
understanding for protein folding mechanism[64] and have been considered as a coarse-grained substitute 
to search conformational space before further refinement[65,66] with a large number of  qubits. D-Wave 
quantum annealers and the Quantum Approximate Optimization Algorithm (QAOA) algorithm both 
share identical features for the protein lattice problem encoded as a Hamiltonian operator. Rotamer 
sampling in the Rosetta energy function[67] and conformer sampling[68] are performed by the quantum 
annealing method. QC-associated AI tools will be able to resolve the formation of  protein complexes, 
protein-protein interactions, and protein-ligand interactions. QC can apply a hit generation and 
validation approach to deliver optimized potential lead molecules with an easier and quicker approach. 
Other properties, such as ADMET properties, dose and solubility optimizations, and other safety issues, 
can be solved with QC. Using the ML algorithms, QC can generate a type of  fake data, which can be 
specifically useful where there is a scarcity of  data, such as in rare diseases, where the missing 
information through artificial data sets can be mitigated[3]. Here, QC will speed up the training of  ML 
models, the amount of  required initial data, and the accuracy level. The development includes patient 
identification and stratification, pharmacogenetic modelling, site selection, and side effects analysis for 
drugs used by the concerned patients. Recently, many features were studied for Alzheimer’s drug 
research[69] with ML applications, which has given insights to identify cancer treatment biomarkers from 
genomics data analysis. The application of  expected QC for hit generation, hit-to-lead, and lead 
optimization is given in Table 2. 

Table 2. Expected QC for hit generation, hit-to-lead, and lead optimization. 

CADD approaches Hit generation and hit-to-lead Lead optimization 

- Method (virtual 
screening/docking) 

Lead identification Optimize ADMET Optimize drug activity 

Multiomics - - - - 
Reverse 
protein blocking 

- - - - 

De novo modelling/ 
protein folding 

- - - - 

Comparative 
modelling 

- Grid-based pocket probes, 
surface alignment 

Supervised machine 
learning for ADMET 

- 

BE calculations Classical MD, 
quantum-inspired SM, 
QM/MM approach 

Classical MD, absolute BE, 
thermodynamic integration, 
free-energy perturbations, 
QM/MM approach, 
fragmentation approaches 

Simulation methods Synthetic biology 
approaches, absolute BE 
calculations, 
thermodynamic 
integration, free-energy 
perturbations 

Conformational 
analysis 

- Classical MD, QM/MM 
approaches, fragmentation 
approaches 

- - 

Reaction path 
simulation/kinetic 
predictions 

- Fragmentation approaches 
with QM calculation 
(synthetic routes) 

- - 

QSAR Supervised and 
unsupervised ML 

Supervised ML to derive 
empirical evidence, 
fragmentation approaches 

Quantum-inspired 
ADME descriptor 
calculation, 
supervised ML for 
ADMET 

- 

Molecular docking - Fragmentation approaches - Classical MD, QM/MM 
approaches 

Automated 
retrosynthesis 

- Unsupervised ML with 
supervised ML (synthetic 
routes) 

- Supervised ML 

Abbreviations: CADD (computer aided drug design); MD (molecular dynamics); QM/MM method (quantum 
mechanics/molecular mechanics); QSAR (quantitative structure-activity relationship)[5]. 



Information System and Smart City 2023; 3(1): 294. 

6 

3. Discussion 
The profile of  drugs is developed for a specific disease and selected for a specific protein target of  

that disease. Further, all desired properties of  the drug are considered, such as specific protein binding 
sites, oral/IV insertion, brain permeability, dose usage, target group, similar and combination drugs, 
administration (timings and time span), package and delivery, marketing strategies, and so forth. 
Various databases can be created for these drugs, which can generate a large chemical space with a 
larger number of  molecules. Quantum algorithms such as the Quadratic Unconstrained Binary 
Optimization (QUBO) algorithm are used to search for specific properties of  the drug profile in a large 
chemical space[70]. These results can be used to filter the desired drugs and preferred binding site(s). 
Once the chemical space is reduced, it greatly reduces the extensive benchwork, which includes tests for 
toxicity, appropriate dosages, and potential costs, among many others. This shortened path eliminates 
inappropriate molecules and helps in the experimental design of  a few complexes, so that the 
production cost is also reduced. The clinical phase 1 trials took several months, with only 70% of  the 
initial passing of  the experimental drugs. QC can treat many more diseases in a smaller number of  
cases as compared to a few years ago. QC will improve drug efficacy in cases of  drug shortages. QC will 
help find small drug molecules to improve delivery methods. QC can also help prepare asset portfolios 
that will have great potential as life-changing medicines in the future. These drugs, when obtained in the 
early stages, can shorten the production time at a later stage. The supply of  drugs will be faster with 
hybrid quantum computing incorporating developed methodologies such as cloud computing, AI, and 
ML. QC will also help in searching for the smallest possible drugs with the desired properties of  the 
selected drug profile, and simulations will become easier with QC. Further repurposing of  
drugs becomes faster with pre-existing clinical data as the clinical trial phases 1, 2, and 3 take several 
years, with only 20%–30% of  drugs passing all three phases. QC brings great hope for drug discovery as 
it can reduce the time of  clinical trials, provide accuracy, and increase safety in an effective manner. In 
quantum technology, quantum annealers and “quantum-inspired” annealers will be used in much larger 
spaces to work for billions of  molecules if  and when needed. 

At present, there are no commercial gate-based quantum computers that can support over 90 qubits 
to develop variational quantum Generative Adversarial Networks (GAN) algorithms, except for 
quantum annealers. However, a hybrid GAN using fewer qubits can be exploited for the benefits of  
quantum computing[71]. 

Drug discovery with QC is fast, safe, and effective. It is anticipated that gate-based universal 
quantum computers, quantum annealers, and quantum-inspired digital annealers will be able to 
transform drug discovery in the future. Quantum methods are linear, and high-performance computing 
(HPC) is not cost-effective. Supercomputers with many GPUs are slow, expensive, and not 
environment- and user-friendly. The threefold advantage of  QC is that it can solve larger problems, 
discover new drugs at a faster rate, and be used in multiple ways. These features will improve and 
transform drug discovery in the near future. Quantum algorithms using appropriate quantum hardware 
can solve significant problems. Quantum processors are built by including trapped ions[72], 
superconducting circuits[73] and photonic devices[74]. However, these processors face errors during 
computation, which can destroy the computational process. Though these errors can be reduced by 
quantum error-correcting codes, these codes demand a large increase in the number of  qubits, which 
further requires advanced methodologies. There are many other resources that affect quantum 
computing, such as decoherence. Small fluctuations can change the quantum gate to produce a different 
output than expected, and the imperfect control mechanisms will always cause some errors. With the 
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maturity of  quantum computers, quantum circuits will be designed to solve meaningful problems in the 
future. The main challenge in QC is that designing quantum circuits on a small scale requires 
preparation for quantum algorithms. Though the cost and time for drug discovery are reduced as 
compared to the traditional methods, with the testing of  a large number of  molecules, it is reduced to a 
few to be synthesized and measured. QC is associated with significant risk, as quantum capabilities are 
important for the privacy of  information and national security. Extracting exact information from 
quantum computers is also very difficult. Though obtaining energy is simple, recovering the entire wave 
function is hard. So, these quantum computers are not fit for those chemical applications where the 
insights are taken from the electronic structure calculations. Still, quantum simulation will be one of  the 
useful applications of  QC[75]. 

Interestingly, the hybrid approach of  ML with quantum computing is now used as a powerful tool 
in predictive analysis. Although the reversibility of  the quantum gates is guaranteed, the lower power 
consumption is not a bonus that comes along with reversibility[76]. Only specific designs of  quantum 
circuits allow you to save some energy[77]. Quantum circuits perform quadratic, polynomial, or 
exponential tasks in a faster manner[78–80]. Hybrid quantum ML uses QC to perform ML algorithms or 
acquire the processing of  quantum information into ML[81–83]. It includes supervised[84], unsupervised[85], 
and RL[86] for drug discovery. An open-access quantum ML framework for Python by Google LLC is 
available to use hybrid quantum ML[87] for varied applications. Various hybrid-quantum MLs are likely 
to be released soon for pharmaceutical applications. 

4. Conclusion 
In theory, the QC algorithm with many qubits is powerful and fast. But whether the practical QCs 

in the next few decades can do so is still questionable. Various pharmaceutical companies or start-ups 
are collaborating to develop beneficial quantum computing-based drug development contracts. The 
recruitment of  skilled technicians and professionals is needed to develop QC-based algorithms to 
enhance pharmaceutical research in drug design and discovery. Currently, there are only a few examples 
of  proven quantum advantages, such as Shor’s algorithm[88]. In addition, there is a lack of  explanation 
as to why the accuracy level can be increased with QC. Multinational companies, such as IBM, are 
conducting various workshops on quantum computing interfaces. Qiskit and other alternative sources 
will be helpful in the development of  specialized programs internally to train the staff  in QC. QC in 
drug discovery is outperforming even the best supercomputers for certain tasks, promising to make 
difficult problems easy in the biological sciences. Though huge progress has been made on the hardware 
side, there are still limitations in scaling and implementing better-quality qubits. The smart players in 
QC have come up with excellent solutions to work with the noise. These improved and more 
noise-resilient algorithms have generated impact and are being adopted on a large scale. With the deeper 
collaboration of  pharma and QC companies, great creativity-enabling solution development will be 
seen in the future. Still, in its infancy, the capacity of  QC to drastically accelerate and optimize trials 
and predictions for the drug discovery space and the life sciences can flourish the pharma industry in 
the future. 
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