Open Journal Systems

Assessment of actuation performance regarding miniature mechanisms triggered by piezoelectric arrangements—A review

Adel Razek

Abstract

This article aims to evaluate and analyze the role of piezoelectric actuation in miniature robots in general and converging towards systems using traveling waves on beams and plates of thin structures. In other words, examining the later in the general context of the first. The useful values of interest concerned by this subject are diverse: applications needing high specific power particularly suitable for miniaturized robots, vibrations supervision, damage and fatigue revealing, medical and other micro pumps applications, different controls in difficult access areas, harvesting of energy, etc. The characteristics and behaviors of actuation, which is accomplished by resonant and non-resonant piezoelectric systems, are first reviewed and examined. The amplification of the actuation is then highlighted. Next, non-resonant piezoelectric actuators for stepping functions are discussed. Then, the main principles of piezoelectric resonant ultrasonic motors are summarized allowing the illustration of the operation of traveling wave piezoelectric resonant beam robots. Next, traveling waves on thin structures are examined, reviewed and conferred. This involves, driving of piezoelectric patches in miniature robots, applications of thin structure embracing piezoelectric materials, and finally thin structure piezoelectric miniature beams and plate robots. Following the last sections, a discussion of the operations of locomotion and positioning of the piezoelectric actuators is presented.


Keywords

piezoelectric actuation; ultrasonic motors; traveling waves; thin structures; miniature robots; beams and plate structures; locomotion and positioning

Full Text:

PDF

References

1. Gu GY, Li CX, Zhu LM, Su CY. Modeling and identification of piezoelectric-actuated stages cascading hysteresis nonlinearity with linear dynamics. IEEE/ASME Transactions on Mechatronics 2016; 21(3): 1792–1797. doi: 10.1109/TMECH.2015.2465868

2. Domenjoud M. Characterization of the Electro-acoustic Properties of Piezoelectric Structures Subjected to a Static Stress of Electrical or Mechanical Type (French) [PhD thesis]. University of Tours (François-Rabelais); 2012.

3. Hernandez C. Realization of Piezoelectric Micro Pumps (French) [PhD thesis]. University of Paris XI; 2010.

4. Hariri H. Design and Realization of a Piezoelectric Mobile for Cooperative Use [PhD thesis]. University of Paris XI; 2012.

5. Dong R, Tan Y, Xie Y. Identification of micropositioning stage with piezoelectric actuators. Mechanical Systems and Signal Processing 2016; 75: 618–630. doi: 10.1016/j.ymssp.2015.12.032

6. Tian X, Liu Y, Deng J, et al. A review on piezoelectric ultrasonic motors for the past decade: Classification, operating principle, performance, and future work perspectives. Sensors and Actuators A: Physical 2020; 306: 111971. doi: 10.1016/j.sna.2020.111971

7. Liu Y, Xu D, Chen W, et al. Design and experimental evaluation of a stepper piezoelectric actuator using bending transducers. IEEE Access 2018; 6: 50518–50525. doi: 10.1109/ACCESS.2018.2868842

8. Wang S, Rong W, Wang L, et al. A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing 2019; 123: 591–605. doi: 10.1016/j.ymssp.2019.01.033

9. Hariri H, Bernard Y, Razek A. Locomotion principles for piezoelectric miniature robots. In: Proceedings on ACTUATOR 10; 14 June 2010; Bremen, Germany. pp. 1015–1020.

10. Park S, He S. Standing wave brass-PZT square tubular ultrasonic motor. Ultrasonics 2012; 52(7): 880–889. doi: 10.1016/j.ultras.2012.02.010

11. Liu Y, Chen W, Liu J, Yang X. A high-power linear ultrasonic motor using bending vibration transducer. IEEE Transactions on Industrial Electronics 2013; 60(11): 5160–5166. doi: 10.1109/TIE.2012.2233691

12. Mazeika D, Kulvietis G, Tumasoniene I, Bansevicius R. New cylindrical piezoelectric actuator based on traveling wave. Mechanical Systems and Signal Processing 2013; 36(1): 127–135. doi: 10.1016/j.ymssp.2011.11.004

13. Zhao Y, Yuan S, Chu X, et al. Ultrasonic micro-motor with multilayer piezoelectric ceramic and chamfered driving tips. Review of Scientific Instruments 2016; 87(9): 095108. doi: 10.1063/1.4963662

14. Zhu C, Chu X, Yuan S, et al. Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet. Ultrasonics 2016; 72: 66–72. doi: 10.1016/j.ultras.2016.07.010

15. Chen J, Zhang C, Xu M, et al. Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model. Mechanical Systems and Signal Processing 2015; 50: 580–593. doi: 10.1016/j.ymssp.2014.05.047

16. Gu GY, Zhu LM, Su CY, et al. Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Transactions on Automation Science and Engineering 2016; 13(1): 313–332. doi: 10.1109/TASE.2014.2352364

17. Gu GY, Zhu LM, Su CY, et al. Proxy-based sliding-mode tracking control of piezoelectric-actuated nanopositioning stages. IEEE/ASME Transactions on Mechatronics 2015; 20(4): 1956–1965. doi: 10.1109/TMECH.2014.2360416

18. He S, Chiarot PR, Park S. A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2011; 58(5): 1049–1061. doi: 10.1109/TUFFC.2011.1905

19. Delibas B, Koc B. L1B2 piezo motor using D33 effect. In: Proceedings of the ACTUATOR 2018, 16th International Conference on New Actuators; 25–27 June 2018; Bremen, Germany. pp. 1–4.

20. Izuhara S, Mashimo T. Design and characterization of a thin linear ultrasonic motor for miniature focus systems. Sensors and Actuators A: Physical 2021; 329: 112797. doi: 10.1016/j.sna.2021.112797

21. Vyshnevskyy O, Kovalev S, Wischnewskiy W. A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2005; 52(11): 2047–2053. doi: 10.1109/tuffc.2005.1561674

22. Hariri H, Bernard Y, Razek A. A traveling wave piezoelectric beam robot. Smart Materials and Structures 2014; 23(2): 025013. doi: 10.1088/0964-1726/23/2/025013

23. Hariri H, Bernard Y, Razek A. Dual piezoelectric beam robot: The effect of piezoelectric patches positions. Journal of Intelligent Material Systems and Structures 2015; 26(18): 2577–2590. doi: 10.1177/1045389X15572013

24. Hariri H, Bernard Y, Razek A. 2-D traveling wave driven piezoelectric plate robot for planar motion. IEEE/ASME Transactions on Mechatronics 2018; 23(1): 242–251. doi: 10.1109/TMECH.2018.2791508

25. Hariri HH, Prasetya LA, Foong S, et al. A tether-less Legged Piezoelectric Miniature Robot using bounding gait locomotion for bidirectional motion. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA); 16–21 May 2016; Stockholm, Sweden. pp. 4743–4749. doi: 10.1109/ICRA.2016.7487676

26. Li H, Liu J, Li K, Liu Y. A review of recent studies on piezoelectric pumps and their applications. Mechanical Systems and Signal Processing 2021; 151: 107393. doi: 10.1016/j.ymssp.2020.107393

27. Kaufmann P, Röhrig S, Supancic P, Deluca M. Influence of ferroelectric domain texture on the performance of multilayer piezoelectric actuators. Journal of the European Ceramic Society 2017; 37(5): 2039–2046. doi: 10.1016/j.jeurceramsoc.2016.12.029

28. Esteves G, Fancher CM, Röhrig S, et al. Electric-field-induced structural changes in multi-layer piezoelectric actuators during electrical and mechanical loading. Acta Materialia 2017; 132: 96–105. doi: 10.1016/j.actamat.2017.04.014

29. Li J, Zhao H, Qu X, et al. Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle. Sensors and Actuators A: Physical 2015; 222: 87–95. doi: 10.1016/j.sna.2014.12.001

30. Oh CH, Choi JH, Nam HJ, et al. Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor. Sensors and Actuators A: Physical 2010; 158(2): 306–312. doi: 10.1016/j.sna.2010.01.022

31. Cheng L, Liu W, Yang C, et al. A neural-network-based controller for piezoelectric-actuated stick-slip devices. IEEE Transactions on Industrial Electronics 2018; 65(3): 2598–2607. doi: 10.1109/TIE.2017.2740826

32. Neuman J, Novâcek Z, Pavera M, et al. Experimental optimization of power-function-shaped drive pulse for stick-slip piezo actuators. Precision Engineering 2015; 42: 187–194. doi: 10.1016/j.precisioneng.2015.04.016

33. Cheng G, Hu V, Wen J, et al. Piezoelectric inertial rotary actuators based on asymmetrically clamping structures. Sensors and Actuators A: Physical 2015; 223: 125–133. doi: 10.1016/j.sna.2015.01.007

34. Furutani K, Kawagoe K. Influence of slope angle and traction load on performance of AZARASHI (Seal) mechanism with one degree of freedom. IEEJ Transactions on Electrical and Electronic Engineering 2010; 5(2): 181–187. doi: 10.1002/tee.20515

35. Furutani K, Makino T. Application of AZARASHI (seal) positioning mechanism to micromanipulation by vacuum suction. In: Proceedings of the 2009 International Symposium on Optomechatronic Technologies; 21–23 September 2009; Istanbul, Turkey. pp. 65–70.

36. Furutani K, Isono H. Performance of AZARASHI (Seal) positioning mechanism with friction control by inertial force. Journal of the Japan Society for Precision Engineering 2010; 76(6): 679–683. doi: 10.2493/jjspe.76.679

37. Ho ST, Jan SJ. A piezoelectric motor for precision positioning applications. Precision Engineering 2016; 43: 285–293. doi: 10.1016/j.precisioneng.2015.08.007

38. Zhang Y, Zhang WJ, Hesselbach J, Kerle H. Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Review of Scientific Instruments 2006; 77: 465–481. doi: 10.1063/1.2185500

39. Bardin VA, Vasil’Ev VA. Combining measurement and control functions in the structure of a multilayer piezoelectric actuator of nano- and micro-motions. Measurement Techniques 2017; 60: 711–716. doi: 10.1007/s11018-017-1259-3

40. Ko BH, Jeong S, Kim D, et al. Identification of the electromechanical material properties of a multilayer ceramic capacitor. International Journal of Applied Ceramic Technology 2017; 14(3): 424–432. doi: 10.1111/ijac.12649

41. Ham YB, Seo WS, Cho WY, et al. Development of a piezoelectric pump using hinge-lever amplification mechanism. Journal of Electroceramics 2009; 23: 346–350. doi: 10.1007/s10832-008-9461-y

42. Lee JW, Li YC, Chen KS, Liu YH. Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage. Precision Engineering 2016; 45: 374–386. doi: 10.1016/j.precisioneng.2016.03.015

43. Chen W, Zhang X, Li H, et al. Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper. Mechanism and Machine Theory 2017; 118: 32–52. doi: 10.1016/j.mechmachtheory.2017.07.011

44. Na TW, Choi JH, Jung JY, et al. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism. Smart Materials and Structures 2016; 25(9): 095028. doi: 10.1088/0964-1726/25/9/095028

45. Tian Y, Shirinzadeh B, Zhang D, Alici G. Development and dynamic modelling of a flexure-based Scott-Russell mechanism for nano-manipulation. Mechanical Systems and Signal Processing 2009; 23(3): 957–978. doi: 10.1016/j.ymssp.2008.06.007

46. Beckers G, Dehez B. Modelling of electric field and stress in piezoelectric composite plates under bending load. In: Proceedings of the 2014 Joint IEEE International Symppsium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy; 12–16 May 2014; State College, PA, USA. pp. 1–4.

47. Kuribayashi M, Ueha S, Mori E. Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor. The Journal of the Acoustical Society of America 1985; 77(4): 1431–1435. doi: 10.1121/1.392037

48. Loh BG, Ro PI. An object transport system using flexural ultrasonic progressive waves generated by two-mode excitation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2000; 47(4): 994–999. doi: 10.1109/58.852083

49. Dehez B, Vloebergh C, Labrique F. Study and optimization of traveling wave generation in finite-length beams. Mathematics and Computers in Simulation 2010; 81(2): 290–301. doi: 10.1016/j.matcom.2010.05.013

50. Hernandez-Rodriguez C, Bernard Y, Razek A. Ultrasonic Traveling Wave Micropump for Liquid. U.S. Patent Application No. US-2013-02423627, 19 September 2013.

51. Hernandez C, Bernard Y, Razek A. Design and manufacturing of a piezoelectric traveling-wave pumping device. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2013; 60(9): 1949–1956. doi: 10.1109/TUFFC.2013.2779

52. Wang Y, Deng J, Li H, et al. A resonant-type thin plate piezoelectric actuator inspired by Koala’s locomotion. IEEE Transactions on Industrial Electronics 2023; 70(8): 8235–8243. doi: 10.1109/TIE.2023.3237874

53. Ebefors T, Stemme G. Microrobotics. In: Gad-el-hak M (editor). The MEMS Handbook. CRC Press; 2001. p. 1368

54. Brufau-Penella J, Puig-Vidal M, López-Sánchez J, et al. MICRON: Small autonomous robot for cell manipulation applications. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation; 18–22 April 2005; Barcelona, Spain. pp. 844–849.

55. Codourey A, Zesch W, Buchi R, Siegwart R. A robot system for automated handling in micro-world. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots; 5–9 August 1995; Pittsburgh, PA, USA. pp. 185–190.

56. Torii A, Kato H, Ueda A. A miniature actuator with electromagnetic elements. Electrical Engineering in Japan 2001; 134(4): 70–75. doi: 10.1002/1520-6416(200103)134:4<70::AID-EEJ9>3.0.CO;2-Q

57. Son KJ, Kartik V, Wickert JA, Sitti M. An ultrasonic standing-wave-actuated nano-positioning walking robot: Piezoelectric metal composite beam modeling. Journal of Vibration and Control 2006; 12(12): 1293–1309. doi: 10.1177/1077546306070619

58. Aoshima SI, Tsujimura T, Yabuta T. Miniature mobile robot using piezo vibration for mobility in a thin tube. Journal of Dynamic Systems, Measurement, and Control 1993; 115(2A): 270–278. doi: 10.1115/1.2899031

59. Heo S, Wiguna T, Park HC, Goo NS. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of Bionic Engineering 2007; 4: 151–158. doi: 10.1016/S1672-6529(07)60027-4

60. Kosa G, Jakab P, Hata N, et al. Flagellar swimming for medical micro robots: Theory, experiments and application. In: Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 19–22 October 2008; Scottsdale, AZ, USA. pp. 258–263.

61. Suhr SH, Song YS, Lee SJ, Sitti M. Biologically inspired miniature water strider robot. In: Proceedings of the Robotics: Science and Systems I; 8–11 June 2005; Cambridge, Massachusetts. pp. 319–326.

62. Sitti M. PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax. In: Proceedings of 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164); 21–26 May 2001; Seoul, Korea (South). pp. 3893–3900.

63. Breguet JM, Johansson S, Driesen W, Simu U. A review on actuation principles for few cubic millimeter sized mobile micro robots. In: Proceedings of the 10th International Conference on New Actuators (Actuator 2006); 14–16 June 2006; Bremen, Germany. pp. 374–381.

64. Yong YK, Fleming AJ. Piezoelectric actuators with integrated high voltage power electronics. IEEE/ASME Transactions Mechatronics 2014; 20(2): 611–617. doi: 10.1109/TMECH.2014.2311040

65. Karpelson M, Wei GY, Wood RJ. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical 2011; 176: 78–89. doi: 10.1016/j.sna.2011.11.035

66. Fath A, Xia T, Li W. Recent advances in the application of piezoelectric materials in microrobotic systems. Micromachines 2022; 13(9): 1422. doi: 10.3390/mi13091422

67. Liu Y, Li J, Deng J, et al. Arthropod-metamerism-inspired resonant piezoelectric millirobot. Advanced Intelligent Systems 2021; 3(8): 2100015. doi: 10.1002/aisy.202100015

68. Robles-Cuenca D, Ramírez-Palma MR, Ruiz-Díez V, et al. Miniature autonomous robot based on legged in-plane piezoelectric resonators with onboard power and control. Micromachines 2022; 13(11): 1815. doi: 10.3390/mi13111815

69. Wang W, Deng J, Liu Y, et al. Design, modeling and experiment of a miniature biped piezoelectric robot. Smart Materials and Structures 2022; 31(7): 075004. doi: 10.1088/1361-665X/ac6f9f

70. Lu H, Cui H, Lu G, et al. 3D printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nature Communications 2023; 14: 2418. doi: 10.1038/s41467-023-37335-w

71. Hariri H, Bernard Y, Razek A. Finite element model of a beam structure with piezoelectric, patches using RL shunt circuits. In: Proceedings of the AC2011, 14th International Conference on Active Systems for Dynamics Markets; 7–8 September 2011; Darmstadt, Germany. pp. 124–131.

72. Yasin MY, Ahmad N, Alam MN. Finite element analysis of actively controlled smart plate with patched actuators and sensors. Latin American Journal of Solids and Structures 2010; 7(3): 227–247. doi: 10.1590/S1679-78252010000300001

73. Wang T, Zhang X, Li K, Yang S. Mechanical performance analysis of a piezoelectric ceramic friction damper and research of its semi-active control strategy. Structures 2021; 33: 1510–1531. doi: 10.1016/j.istruc.2021.04.100

74. Cui M, Liu H, Jiang H, et al. Active vibration optimal control of piezoelectric cantilever beam with uncertainties. Measurement and Control 2022; 55(5–6): 359–369. doi: 10.1177/00202940221091244

75. Rodriguez-Fortun JM, Orus J, Alfonso J, et al. Flatness-based active vibration control for piezoelectric actuators. IEEE/ASME Transactions on Mechatronics 2013; 18(1): 221–229. doi: 10.1109/TMECH.2011.2166998

76. Qu GM, Li YY, Cheng L, Wang B. Vibration analysis of a piezoelectric composite plate with cracks. Journal of Composite Structures 2006; 72(1): 111–118. doi: 10.1016/j.compstruct.2004.11.001

77. Lematre M, Lethiecq M. Enhancement of guided wave detection and measurement in buried layers of multilayered structures using a new design of V(z) acoustic transducers. Acoustics 2022; 4(4): 996–1012. doi: 10.3390/acoustics4040061

78. Zhu J, Gao C, He L. Piezoelectric-based crack detection techniques of concrete structures: Experimental study. Journal of Wuhan University of Technology—Materials Science Edition 2012; 27(2): 346–352. doi: 10.1007/s11595-012-0464-9

79. Chomette B, Fernandes A, Sinou JJ. Cracks detection using active modal damping and piezoelectric components. Shock and Vibration 2013; 20: 126870. doi: 10.3233/SAV-130772

80. Feng K, Ji JC, Ni Q. A novel gear fatigue monitoring indicator and its application to remaining useful life prediction for spur gear in intelligent manufacturing systems. International Journal of Fatigue 2023; 168: 107459. doi: 10.1016/j.ijfatigue.2022.107459

81. Wong VK, Liu M, Goh WP, et al. Structural health monitoring of fastener hole using ring-design direct-write piezoelectric ultrasonic transducer. Structural Health Monitoring 2022; 21(6): 1144. doi: 10.1177/14759217211073950

82. Roy G, Panigrahi B, Pohit G. Crack identification in beam-type structural elements using a piezoelectric sensor. Nondestructive Testing and Evaluation 2021; 36(6): 597–615. doi: 10.1080/10589759.2020.1843652

83. Yu L, Momeni S, Godinez V, et al. Dual mode sensing with low-profile piezoelectric thin wafer sensors for steel bridge crack detection and diagnosis. Advances in Civil Engineering 2012; 2012: 402179. doi: 10.1155/2012/402179

84. Sunyoto, Bernard Y, Razek A. Design and realization of a linear piezoelectric actuator for orthopedic applications. Journal of Advanced Science 2006; 18(1–2): 162–165. doi: 10.2978/jsas.18.162

85. Hernandez C, Bernard Y, Razek A. A global assessment of piezoelectric actuated micro-pumps. European Physical Journal Applied Physics 2010; 51(2): 20101. doi: 10.1051/epjap/2010090

86. Dehez B. Improved constitutive equations of piezoelectric monomorphs: Application to the preliminary study of an original traveling-wave peristaltic pump. Sensors and Actuator A: Physical 2011; 169(1): 141–150. doi: 10.1016/j.sna.2011.04.013

87. Li H, Liu J, Li K, Liu Y. A review of recent studies on piezoelectric pumps and their applications. Mechanical Systems and Signal Processing 2021; 151: 107393. doi: 10.1016/j.ymssp.2020.107393

88. Chen HJ, Hsu YH, Lee CK. Rotary piezoelectric motor using a rectangular vibrator of four actuators. In: Proceedings of SPIE 12483, Active and Passive Smart Structures and Integrated Systems XVII, 124831L 2023; 28 April 2023; Long Beach, California, United States.

89. Tressler JF, Alkoy S, Newnham RE. Piezoelectric sensors and sensor materials. Journal of Electroceramics 1998; 2: 257–272. doi: 10.1023/A:1009926623551

90. Zimmermann T, Neuburger M, Benkart P, et al. Piezoelectric GaN sensor structures. IEEE Electron Device Letters 2006; 27(5): 309–312. doi: 10.1109/LED.2006.872918

91. Yamashita K, Hibino H, Nishioka T, et al. Vibration mode of MEMS ultrasonic sensors on buckled diaphragms with piezoelectric resonance frequency modification. In: Proceedings of 2019 IEEE SENSORS; 27–30 October 2019; Montreal, QC, Canada. doi: 10.1109/SENSORS43011.2019.8956622

92. Howells CA. Piezoelectric energy harvesting. Energy Conversion and Management 2009; 50(7): 1847–1850. doi: 10.1016/j.enconman.2009.02.020

93. Jiang WA, Chen LQ. Snap through piezoelectric energy harvesting. Journal of Sound and Vibration 2014; 333(18): 4314–4325. doi: 10.1016/j.jsv.2014.04.035

94. Zhu Q, Li Y, He Y, Guan M. Piezoelectric energy harvesting in automobiles. Ferroelectrics 2014; 467(1): 33–41. doi: 10.1080/00150193.2014.932165

95. Hobbs WB, Hu DL. Tree-inspired piezoelectric energy harvesting. Journal of Fluids and Structures 2012; 28: 103–114. doi: 10.1016/j.jfluidstructs.2011.08.005

96. Hariri H, Bernard Y, Razek A. A two dimensions modeling of non-collocated piezoelectric patches bonded on thin structure. Curved and Layered Structures 2014; 2(1): 15–27. doi: 10.1515/cls-2015-0002

97. de Abreu GLCM, Ribeiro JF, Steffen V. Finite element modeling of a plate with localized piezoelectric sensors and actuators. Journal of the Brazilian Society of Mechanical Sciences & Engineering 2004; 26(2): 117–128. doi: 10.1590/S1678-58782004000200002

98. Jalili N. Piezoelectric-Based Vibration Control, from Macro to Micro-Nano Scale Systems. Springer; 2009.

99. Lin CC, Huang HN. Vibration control of beam-plates with bonded piezoelectric sensors and actuators. Journal of Computers and Structures 1999; 73(1–5): 239–248. doi: 10.1016/S0045-7949(98)00280-6

100. Nguyen CH, Pietrzko SJ. FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R-L shunt circuit. Journal of Finite Elements in Analysis and Design 2006; 42(14–15): 1231–1239. doi: 10.1016/j.finel.2006.06.003

101. Park CH. Dynamics modeling of beams with shunted piezoelectric elements. Journal of Sound and Vibration 2003; 268(1): 115–129. doi: 10.1016/S0022-460X(02)01491-8

102. Varadan VV, Lim YH, Varadan VK. Closed loop finite element modeling of active/passive damping in structural vibration control. Journal of Smart Materials and Structures 1996; 5: 685–694. doi: 10.1088/0964-1726/5/5/016

103. Chen JS, Chen SH, Wu KC. Analysis of asymmetric piezoelectric composite beam. arXiv 2008; arXiv:0802.3080. doi: 10.48550/arXiv.0802.3080

104. Kayacik O, Bruch JC, Sloss JM, et al. Integral equation approach for piezo patch vibration control of beams with various types of damping. Journal of Computers and Structures 2008; 86(3–5): 357–366. doi: 10.1016/j.compstruc.2007.01.033

105. Pons JL, Rodríguez H, Rocon E, et al. Practical consideration of shear strain correction factor and Rayleigh damping in models of piezoelectric transducers. Journal of Sensors and Actuators A: Physical 2004; 115(2–3): 202–208. doi: 10.1016/j.sna.2004.01.054

106. Corcolle R, Bouillault F, Bernard Y. Modeling of a plate with piezoelectric patches: Damping application. IEEE Transactions on Magnetics 2008; 44(6): 798–801. doi: 10.1109/TMAG.2007.916591

107. Liu GR, Peng XQ, Lam KY, Tani J. Vibration control simulation of laminated composite plates with integrated piezoelectric. Journal of Sound and Vibration 1999; 220(5): 827–846. doi: 10.1006/jsvi.1998.1970

108. Wang SY, Quek ST, Ang KK. Dynamic stability analysis of finite element modeling of piezoelectric composite plates. International Journal of Solids and Structures 2003; 41(3–4): 745–764. doi: 10.1016/j.ijsolstr.2003.09.041

109. Uchino K. Piezoelectric actuators 2006. Expansion from IT/Robotics to ecological/energy applications. Journal of Electroceramics 2008; 20: 301–311. doi: 10.1007/s10832-007-9196-1

110. Uchino K. Ferroelectric Devices. CRC Press; 2018. doi: 10.1201/b15852

111. Hernando-García J, García-Caraballo JL, Ruiz-Díez V, Sánchez-Rojas JL. Comparative study of traveling and standing wave-based locomotion of legged bidirectional miniature piezoelectric robots. Micromachines 2021; 12(2): 171. doi: 10.3390/mi12020171

112. Goldberg B, Zufferey R, Doshi N, et al. Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE Robotics and Automation Letters 2018; 3(2): 987–993. doi: 10.1109/LRA.2018.2793355

113. Zheng Z, Zhao Y, Wang G. Research on piezoelectric driving microminiature three-legged crawling robot. Journal of Bionic Engineering 2023; 20: 1481–1492. doi: 10.1007/s42235-023-00350-0

114. Dharmawan AG, Hariri HH, Foong S, et al. Steerable miniature legged robot driven by a single piezoelectric bending unimorph actuator. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA); 2017; Singapore. pp. 6008–6013.

115. Wood RJ. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transactions on Robotics 2008; 24(2): 341–347. doi: 10.1109/TRO.2008.916997

116. Yan S, Zhang F, Qin Z, Wen S. A 3-DOFs mobile robot driven by a piezoelectric actuator. Smart Materials and Structures 2005; 15(1): N7. doi: 10.1088/0964-1726/15/1/N02

117. Shao Y, Xu M, Shao S, Song S. Effective dynamical model for piezoelectric stick-slip actuators in bi-directional motion. Mechanical Systems and Signal Processing 2020; 145: 106964. doi: 10.1016/j.ymssp.2020.106964

118. Xu Z, Yang Z, Wang K, et al. A bionic inertial piezoelectric actuator with improved frequency bandwidth. Mechanical Systems and Signal Processing 2021; 156: 107620. doi: 10.1016/j.ymssp.2021.107620

119. Hunstig M. Piezoelectric inertia motors—A critical review of history, concepts, design, applications, and perspectives. Actuators 2017; 6(1): 7. doi: 10.3390/act6010007

120. Simu U, Johansson S. Analysis of static and dynamic motion mechanisms for piezoelectric miniature robots. Journal of Sensors and Actuators 2006; 132(2): 632–642. doi: 10.1016/j.sna.2006.02.023

121. Díaz-Molina A, Ruiz-Díez V, Hernando-García J, et al. Generation of linear traveling waves in piezoelectric plates in air and liquid. Micromachines 2019; 10(5): 283. doi: 10.3390/mi10050283

122. Zhao J, Mu G, Dong H, et al. Study of the velocity and direction of piezoelectric robot driven by traveling waves. IEEE Transactions on Industrial Electronics 2022; 70(9): 9260–9269. doi: 10.1109/TIE.2022.3210545

123. Jones L, Spahnie J, Lefeave K, et al. Vehicle propulsion by solid state motion. In: Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 8–10 September 2014; Newport, Rhode Island, USA. pp. 1–7.

124. Kosa G, Shoham M, Zaaroor M. Propulsion method for swimming microrobots. IEEE Transactions on Robotics 2007; 23(1): 137–150. doi: 10.1109/TRO.2006.889485

125. Zhou X, Liu Y, Sun J, et al. Development of an antihydropressure miniature underwater robot with multilocomotion mode using piezoelectric pulsed-jet actuator. IEEE Transactions on Industrial Electronics 2023; 70(5): 5044–5054. doi: 10.1109/TIE.2022.3189088

126. Yan JH, Zhang XB, Zhao J, et al. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider’s locomotion. Bioinspiration & Biomimetics 2015; 10(4): 046016. doi: 10.1088/1748-3190/10/4/046016

127. Chen Y, Doshi N, Goldberg B, et al. Controllable water surface to underwater transition through electro wetting in a hybrid terrestrial-aquatic microrobot. Nature Communications 2018; 9(1): 2495. doi: 10.1038/s41467-018-04855-9

128. Zhang Z, Fan P, Dong Y, et al. A review of modeling and control of piezoelectric stick-slip actuators. Available online: http://dx.doi.org/10.5772/intechopen.103838 (23 April 2022).

129. Wang Y, Xu Z, Huang H. A novel stick-slip piezoelectric rotary actuator designed by employing a centrosymmetric flexure hinge mechanism. Smart Materials and Structures 2020; 29(12): 125006. doi: 10.1088/1361-665X/abb98c

130. Chen C, Shi Y, Zhang J, Wang J. Novel linear piezoelectric motor for precision position stage. Chinese Journal of Mechanical Engineering 2016; 29(2): 378–385. doi: 10.3901/CJME.2015.1216.149

131. Li J, Huang H, Morita T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review. Sensors and Actuators A: Physical 2019; 292: 39–51. doi: 10.1016/j.sna.2019.04.006


(202 Abstract Views, 119 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Adel Razek

License URL: http://creativecommons.org/licenses/by/4.0/

Creative Commons License
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.